1 MICRO to BTC (1 Micromines to Bitcoin) Exchange Calculator

r/IOTAmarkets

Welcome to IOTAmarkets! -- IOTA is a quantum-resistant distributed ledger protocol launched in 2015, focused on being useful for the emerging m2m economy of Internet-of-Things (IoT), data integrity, micro-/nano- payments, and anywhere else a scalable decentralized system is warranted. IOTA uniquely offers zero fees, no scaling limitations, and decentralized consensus where users are also validators. The digital currency 'iota' has a fixed money supply with zero inflationary cost.
[link]

NEAR PROJECT REPORT

NEAR PROJECT REPORT
Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/xbnvecjn71t51.png?width=1164&format=png&auto=webp&s=acfd141ead035ee156f218eec9fc41288142a922

ABSTRACT

The effects of the web by a number of companies have seduced a large number of users as these companies keep their data to prevent them from searching for alternatives. Likewise, these huge platforms have attracted applications to build their highest ecosystems before either severing access or actively opposing their interests when the applications became so successful. As a result, these walled gardens have effectively hindered innovation and monopolized large sections of the web. After the emergence of blockchain technology and decentralized cryptocurrencies, the need for applications to support decentralization has emerged. Several blockchain-based companies, applications and platforms have appeared in decentralization. In this research report, we will explain the approach adopted by the NEAR decentralization platform in designing and implementing the basic technology for its system. Near is a basic platform for cloud computing and decentralized storage managed by the community, designed to enable the open web for the future. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.

1. INTRODUCTION

The richness of the web is increasing day by day with the combined efforts of millions of people who have benefited from “innovation without permission” as content and applications are created without asking anyone. this lack of freedom of data has led to an environment hostile to the interests of its participants. And as we explained in the summary previously, web hosting companies have hindered innovation and greatly monopolized the web.
In the future, we can fix this by using new technologies to re-enable the permissionless innovation of the past in a way, which creates a more open web where users are free and applications are supportive rather than adversarial to their interests.
Decentralization emerged after the global financial crisis in 2008, which created fundamental problems of confidence in the heavily indebted banking system. Then the decentralized financial sector based on Blockchain technology has emerged since 2009.
Decentralized Blockchain technology has made it easy for decentralized digital currencies like Bitcoin to exchange billions of dollars in peer-to-peer transfers for a fraction of the price of a traditional banking system. This technology allows participants in the over $ 50 billion virtual goods economy to track, own and trade in these commodities without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
By default, the Internet where freedom of data enables innovation will lead to the development of a new form of software development. On this web, developers can quickly create applications from open state components and boost their efforts by using new business models that are enabled from within the program itself rather than relying on parasitic relationships with their users. This not only accelerates the creation of applications that have a more honest and cooperative relationship with its users, but also allows the emergence of completely new business built on them.
To enable these new applications and the open web, it needs the appropriate infrastructure. The new web platform cannot be controlled by a single entity and its use is not limited due to insufficient scalability. It should be decentralized in design like the web itself and supported by a community of distributors widely so that the value they store cannot be monitored, modified or removed without permission from the users who store this value on their behalf.
A new decentralization technology (Blockchain), which has facilitated decentralized digital currencies like Bitcoin, has made billions of dollars in peer-to-peer transfers at a fraction of the price of the traditional banking system. This technology allows participants in the $ 50 billion + virtual goods economy to track, own and trade in these goods without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
Although the cost of storing data or performing a calculation on the Ethereum blockchain is thousands and millions of times higher than the cost of performing the same functionality on Amazon Web Services. A developer can always create a “central” app or even a central currency for a fraction of the cost of doing the same on a decentralized platform because a decentralized platform, by definition, will have many iterations in its operations and storage.
Bitcoin can be thought of as the first, very basic, version of this global community-run cloud, though it is primarily used only to store and move the Bitcoin digital currency.
Ethereum is the second and slightly more sophisticated version, which expanded the basic principles of Bitcoin to create a more general computing and storage platform, though it is a raw technology, which hasn’t achieved meaningful mainstream adoption.

1.1 WHY IS IT IMPORTANT TO PAY THE EXTRA COST TO SUPPORT DECENTRALIZATION?

Because some elements of value, for example bits representing digital currency ownership, personal identity, or asset notes, are very sensitive. While in the central system, the following players can change the value of any credits they come into direct contact with:
  1. The developer who controls the release or update of the application’s code
  2. The platform where the data is stored
  3. The servers which run the application’s code
Even if none of these players intend to operate with bad faith, the actions of governments, police forces and hackers can easily turn their hands against their users and censor, modify or steal the balances they are supposed to protect.
A typical user will trust a typical centralized application, despite its potential vulnerabilities, with everyday data and computation. Typically, only banks and governments are trusted sufficiently to maintain custody of the most sensitive information — balances of wealth and identity. But these entities are also subject to the very human forces of hubris, corruption and theft.
Especially after the 2008 global financial crisis, which demonstrated the fundamental problems of confidence in a highly indebted banking system. And governments around the
world apply significant capital controls to citizens during times of crisis. After these examples, it has become a truism that hackers now own most or all of your sensitive data.
These decentralized applications operate on a more complex infrastructure than today’s web but they have access to an instantaneous and global pool of currency, value and information that today’s web, where data is stored in the silos of individual corporations, cannot provide.

1.2 THE CHALLENGES OF CREATING A DECENTRALIZED CLOUD

A community-run system like this has very different challenges from centralized “cloud” infrastructure, which is running by a single entity or group of known entities. For example:
  1. It must be both inclusive to anyone and secure from manipulation or capture.
  2. Participants must be fairly compensated for their work while avoiding creating incentives for negligent or malicious behavior.
  3. It must be both game theoretically secure so good actors find the right equilibrium and resistant to manipulation so bad actors are actively prevented from negatively affecting the system.

2. NEAR

NEAR is a global community-run computing and storage cloud which is organized to be permissionless and which is economically incentivized to create a strong and decentralized data layer for the new web.
Essentially, it is a platform for running applications which have access to a shared — and secure — pool of money, identity and data which is owned by their users. More technically, it combines the features of partition-resistant networking, serverless compute and distributed storage into a new kind of platform.
NEAR is a community-managed, decentralized cloud storage and computing platform, designed to enable the open web in the future. It uses the same core technology for Bitcoin and Blockchain. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.
NEAR is a decentralized community-run cloud computing and storage platform, which is designed to enable the open web of the future. On this web, everything from new currencies to new applications to new industries can be created, opening the door to a brand new future.
NEAR is a scalable computing and storage platform with the potential to change how systems are designed, how applications are built and how the web itself works.
It is a complex technology allow developers and entrepreneurs to easily and sustainably build applications which reap the benefits of decentralization and participate in the Open Web while minimizing the associated costs for end users.
NEAR creates the only community-managed cloud that is strong enough to power the future of the open web, as NEAR is designed from the ground up to deliver intuitive experiences to
end users, expand capacity across millions of devices, and provide developers with new and sustainable business models for their applications.
The NEAR Platform uses a token — also called “NEAR”. This token allows the users of these cloud resources, regardless of where they are in the world, to fairly compensate the providers of the services and to ensure that these participants operate in good faith.

2.1 WHY NEAR?

Through focus, we find that Platforms based on blockchain technologies like Bitcoin and Ethereum have made great progress and enriched the world with thousands of innovative applications spanning from games to decentralized financing.
However, these original networks and none of the networks that followed were not able to bridge the gap towards mainstream adoption of the applications created above them and do not provide this type of standard that fully supports the web.
This is a result of two key factors:
  1. System design
  2. Organization design
System design is relevant because the technical architecture of other platforms creates substantial problems with both usability and scalability which have made adoption nearly impossible by any but the most technical innovators. End-users experience 97–99% dropoff rates when using applications and developers find the process of creating and maintaining their applications endlessly frustrating.
Fixing these problems requires substantial and complex changes to current protocol architectures, something which existing organizations haven’t proven capable of implementing. Instead, they create multi-year backlogs of specification design and implementation, which result in their technology falling further and further behind.
NEAR’s platform and organization are architected specifically to solve the above-mentioned problems. The technical design is fanatically focused on creating the world’s most usable and scalable decentralized platform so global-scale applications can achieve real adoption. The organization and governance structure are designed to rapidly ship and continuously evolve the protocol so it will never become obsolete.

2.1.1 Features, which address these problems:

1. USABILITY FIRST
The most important problem that needs to be addressed is how to allow developers to create useful applications that users can use easily and that will capture the sustainable value of these developers.
2. End-User Usability
Developers will only build applications, which their end users can actually use. NEAR’s “progressive security” model allows developers to create experiences for their users which more closely resemble familiar web experiences by delaying onboarding, removing the need for user to learn “blockchain” concepts and limiting the number of permission-asking interactions the user must have to use the application.
1. Simple Onboarding: NEAR allows developers to take actions on behalf of their users, which allows them to onboard users without requiring these users to provide a wallet or interact with tokens immediately upon reaching an application. Because accounts keep track of application-specific keys, user accounts can also be used for the kind of “Single Sign On” (SSO) functionality that users are familiar with from the traditional web (eg “Login with Facebook/Google/Github/etc”).
2. Easy Subscriptions: Contract-based accounts allow for easy creation of subscriptions and custom permissioning for particular applications.
3. Familiar Usage Styles: The NEAR economic model allows developers to pay for usage on behalf of their users in order to hide the costs of infrastructure in a way that is in line with familiar web usage paradigms.
4. Predictable Pricing: NEAR prices transactions on the platform in simple terms, which allow end-users to experience predictable pricing and less cognitive load when using the platform.

2.1.2 Design principles and development NEAR’s platform

1. Usability: Applications deployed to the platform should be seamless to use for end users and seamless to create for developers. Wherever possible, the underlying technology itself should fade to the background or be hidden completely from end users. Wherever possible, developers should use familiar languages and patterns during the development process. Basic applications should be intuitive and simple to create while applications that are more robust should still be secure.
2. Scalability: The platform should scale with no upper limit as long as there is economic justification for doing so in order to support enterprise-grade, globally used applications.
3. Sustainable Decentralization: The platform should encourage significant decentralization in both the short term and the long term in order to properly secure the value it hosts. The platform — and community — should be widely and permissionlessly inclusive and actively encourage decentralization and participation. To maintain sustainability, both technological and community governance mechanisms should allow for practical iteration while avoiding capture by any single parties in the end.
4. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose. Optimize for simplicity, pragmatism and ease of understanding above theoretical perfection.

2.2 HOW NEAR WORKS?

NEAR’s platform provides a community-operated cloud infrastructure for deploying and running decentralized applications. It combines the features of a decentralized database with others of a serverless compute platform. The token, which allows this platform to run also, enables applications built on top of it to interact with each other in new ways. Together, these features allow developers to create censorship resistant back-ends for applications that deal with high stakes data like money, identity, assets, and open-state components, which interact seamlessly with each other. These application back-ends and components are called “smart contracts,” though we will often refer to these all as simply “applications” here.
The infrastructure, which makes up this cloud, is created from a potentially infinite number of “nodes” run by individuals around the world who offer portions of their CPU and hard drive space — whether on their laptops or more professionally deployed servers. Developers write smart contracts and deploy them to this cloud as if they were deploying to a single server, which is a process that feels very similar to how applications are deployed to existing centralized clouds.
Once the developer has deployed an application, called a “smart contract”, and marked it unchangeable (“immutable”), the application will now run for as long as at least a handful of members of the NEAR community continue to exist. When end users interact with that deployed application, they will generally do so through a familiar web or mobile interface just like any one of a million apps today.
In the central cloud hosted by some companies today like: Amazon or Google, developers pay for their apps every month based on the amount of usage needed, for example based on the number of requests created by users visiting their webpages. The NEAR platform similarly requires that either users or developers provide compensation for their usage to the community operators of this infrastructure. Like today’s cloud infrastructure, NEAR prices usage based on easy to understand metrics that aren’t heavily influenced by factors like system congestion. Such factors make it very complicated for developers on alternative blockchain-based systems today.
In the centralized cloud, the controlling corporation makes decisions unilaterally. NEAR community-run cloud is decentralized so updates must ultimately be accepted by a sufficient quorum of the network participants. Updates about its future are generated from the community and subject to an inclusive governance process, which balances efficiency and security.
In order to ensure that the operators of nodes — who are anonymous and potentially even malicious — run the code with good behavior, they participate in a staking process called “Proof of Stake”. In this process, they willingly put a portion of value at risk as a sort of deposit, which they will forfeit if it is proven that they have operated improperly.

2.2.1 Elements of the NEAR’s Platform

The NEAR platform is made up of many separate elements. Some of these are native to the platform itself while others are used in conjunction with or on top of it.
1. THE NEAR TOKEN
NEAR token is the fundamental native asset of the NEAR ecosystem and its functionality is enabled for all accounts. Each token is a unique digital asset similar to Ether, which can be used to:
a) Pay the system for processing transactions and storing data.
b) Run a validating node as part of the network by participating in the staking process.
c) Help determine how network resources are allocated and where its future technical direction will go by participating in governance processes.
The NEAR token enables the economic coordination of all participants who operate the network plus it enables new behaviors among the applications which are built on top of that network.
2. OTHER DIGITAL ASSETS
The platform is designed to easily store unique digital assets, which may include, but aren’t limited to:
  • Other Tokens: Tokens bridged from other chains (“wrapped”) or created atop the NEAR Platform can be easily stored and moved using the underlying platform. This allows many kinds of tokens to be used atop the platform to pay for goods and services. “Stablecoins,” specific kinds of token which are designed to match the price of another asset (like the US Dollar), are particularly useful for transacting on the network in this way.
  • Unique Digital Assets: Similar to tokens, digital assets (sometimes called “Non Fungible Tokens” (NFTs) ranging from in-game collectibles to representations of real-world asset ownership can be stored and moved using the platform.
3. THE NEAR PLATFORM
The core platform, which is made up of the cloud of community-operated nodes, is the most basic piece of infrastructure provided. Developers can permissionlessly deploy smart contracts to this cloud and users can permissionlessly use the applications they power. Applications, which could range from consumer-facing games to digital currencies, can store their state (data) securely on the platform. This is conceptually similar to the Ethereum platform.
Operations that require an account, network use, or storage at the top of the platform require payment to the platform in the form of transaction fees that the platform then distributes to its community from the authentication contract. These operations could include creating new accounts, publishing new contracts, implementing code by contract and storing or modifying data by contract.
As long as the rules of the protocol are followed, any independent developer can write software, which interfaces with it (for example, by submitting transactions, creating accounts or even running a new node client) without asking for anyone’s permission first.
4. THE NEAR DEVELOPMENT SUITE
Set of tools and reference implementations created to facilitate its use by those developers and end users who prefer them. These tools include:
  • NEAR SDKs: NEAR platform supports (Rust and AssemblyScript) languages to write smart contracts. To provide a great experience for developers, NEAR has a full SDK, which includes standard data structures, examples and testing tools for these two languages.
  • Gitpod for NEAR: NEAR uses existing technology Gitpod to create zero time onboarding experience for developers. Gitpod provides an online “Integrated Development Environment” (IDE), which NEAR customized to allow developers to easily write, test and deploy smart contracts from a web browser.
  • NEAR Wallet: A wallet is a basic place for developers and end users to store the assets they need to use the network. NEAR Wallet is a reference implementation that is intended to work seamlessly with the progressive security model that lets application developers design more effective user experiences. It will eventually include built-in functionality to easily enable participation by holders in staking and governance processes on the network.
  • NEAR Explorer: To aid with both debugging of contracts and the understanding of network performance, Explorer presents information from the blockchain in an easily digestible web-based format.
  • NEAR Command Line Tools: The NEAR team provides a set of straightforward command line tools to allow developers to easily create, test and deploy applications from their local environments.
All of these tools are being created in an open-source manner so they can be modified or deployed by anyone.

3. ECONOMIC

Primarily economic forces drive the ecosystem, which makes up the NEAR platform. This economy creates the incentives, which allow participants permissionlessly organize to drive the platform’s key functions while creating strong disincentives for undesirable, irresponsible or malicious behavior. In order for the platform to be effective, these incentives need to exist both in the short term and in the long term.
The NEAR platform is a market among participants interested in two aspects:
  • On the supply side, certification contract operators and other core infrastructure must be motivated to provide these services that make up the community cloud.
  • On the demand side, platform developers and end-users who pay for their use need to be able to do so in a simple, clear and consistent way that helps them.
Further, economic forces can also be applied to support the ecosystem as a whole. They can be used at a micro level to create new business models by directly compensating the developers who create its most useful applications. They can also be used at a macro level by coordinating the efforts of a broader set of ecosystem participants who participate in everything from education to governance.

3.1 NEAR ECONOMY DESIGN PRINCIPLES

NEAR’s overall system design principles are used to inform its economic design according to the following interpretations:
1. Usability: End users and developers should have predictable and consistent pricing for their usage of the network. Users should never lose data forever.
2. Scalability: The platform should scale at economically justified thresholds.
3. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose.
4. Sustainable Decentralization: The barrier for participation in the platform as a validating node should be set as low as possible in order to bring a wide range of participants. Over time, their participation should not drive wealth and control into the hands of a small number. Individual transactions made far in the future must be at least as secure as those made today in order to safeguard the value they modify.

3.2 ECONOMIC OVERVIEW

The NEAR economy is optimized to provide developers and end users with the easiest possible experience while still providing proper incentives for network security and ecosystem development.
Summary of the key ideas that drive the system:
  • Thresholded Proof of Stake: Validating node operators provide scarce and valuable compute resources to the network. In order to ensure that the computations they run are correct, they are required to “stake” NEAR tokens, which guarantee their results. If these results are found to be inaccurate, the staker loses their tokens. This is a fundamental mechanism for securing the network. The threshold for participating in the system is set algorithmically at the lowest level possible to allow for the broadest possible participation of validating nodes in a given “epoch” period (½ of a day).
  • Epoch Rewards: Node operators are paid for their service a fixed percentage of total supply as a “security” fee of roughly 4.5% annualized. This rate targets sufficient participation levels among stakers in order to secure the network while balancing with other usage of NEAR token in the ecosystem.
  • Protocol treasury: In addition to validators, protocol treasury received a 0.5% of total supply annually to continuously re-invest into ecosystem development.
  • Transaction Costs: Usage of the network consumes two separate kinds of resources — instantaneous and long term. Instantaneous costs are generated by every transaction because each transaction requires the usage of both the network itself and some of its computation resources. These are priced together as a mostly-predictable cost per transaction, which is paid in NEAR tokens.
  • Storage Costs: Storage is a long term cost because storing data represents an ongoing burden to the nodes of the network. Storage costs are covered by maintaining minimum balance of NEAR tokens on the account or contract. This provides indirect mechanism of payment via inflation to validators for maintaining contract and account state on their nodes.
  • Inflation: Inflation is determined as combination of payouts to validators and protocol treasury minus the collected transaction fees and few other NEAR burning mechanics (like name auction). Overall the maximum inflation is 5%, which can go down over time as network gets more usage and more transactions fees are burned. It’s possible that inflation becomes negative (total supply decreases) if there is enough fees burned.
  • Scaling Thresholds: In a network, which scales its capacity relative to the amount of usage it receives, the thresholds, which drive the network to bring on additional capacity are economic in nature.
  • Security Thresholds: Some thresholds, which provide for good behavior among participants are set using economic incentives. For example, “Fishermen” (described separately).
Full Report
submitted by CoinEx_Institution to Coinex [link] [comments]

IPFS— The New-gen Tech Revolution, or Another Illusion?

IPFS— The New-gen Tech Revolution, or Another Illusion?
Founded in 2014, after 6 years of R & D as well as its expansion, and after nearly a year of extensive testing and preparation, IPFS (Interplanetary File System) was officially launched on the afternoon of October 15, 2020, UTC time. 12 hours after the mainnet went online, Its token price fluctuated between 50~70 USD/FIL. However, panic and pessimism began to spread between the IPFS community and FIL token holders. Based on the total amount of FIL (2 billion) and the unit price of 50 US dollars estimation, its market value has exceeded 100 billion US dollars, second only to BTC. As such a mega valued IPFS/FIL went online, if there is no enough application to support, the selling pressure after the FIL is gradually unlocked will become huge. According to calculations, on the first day of the mainnet launch, there will be 239,000 FILs to be sold. Assuming that the unit price is 30 USD, the released circulation will be 8 million USD. Assuming the unit price remains unchanged, the market will usher in a similar value on the 10th day. With a release amount of 15 million USD, it is very likely that the corresponding token price can be supported.
IPFS is a network transmission protocol designed to create persistent and distributed storage and sharing of files. In terms of its current active projects and companies, IPFS has added more than 5 billion files, involving multiple industries, and there are also many blockchain companies using this technology. When the IPFS mainnet and its Filecoin goes online, the market value will be based on the applications brought by the IPFS network. After Bitcoin and Ethereum, Filecoin is an upstart in the blockchain industry with a revolutionary technological breakthrough. The market predicts that Filecoin’s market value will surpass Bitcoin. Now let us analyze this project together that was given high hopes:
IPFS major features and disadvantages
The basic application of IPFS, Filecoin’s financial attributes and its incentive mechanism make it a very exciting global collaborative open source project. On this basis, the data of all mankind is stored in the IPFS network, and no one can tamper with it.
This magnificent scene provides at least three values ​​for us:
  1. It creates a storage network service that is license-free and trust-free. This is very important. When you want to access a digital file, you don’t need to get approval or filing from any organization, and strict certification. As for non-centralized trust, it does not require user to trust the supplier that provides storage services, which significantly reduces the cost.
  2. The successful application of IPFS will most likely enable all idle storage resources in the world to be gathered to form a network and be effectively used, and such a network is unprecedented.
  3. Through such a model, network redundancy can be effectively reduced, and the complete separation of data can be achieved. There is no need to store files in a fixed location, only the content needs to be stored in an IPFS and Filecoin network.
However, Plentiful in ideal yet bony in reality. The design flaws of the IPFS project make it difficult to truly apply in the practical environment. Its design flaws mainly focus in the following aspects:
  1. Cannot support hot data storage.
Based on the principle of data timeliness, the higher the frequency of data access, the greater the value of the data possess. At present, IPFS only supports cold data storage scenarios. The lack of support for network transmission makes it impossible to establish a transmission network for hot data, which means the lack of the most valuable support for the network.
  1. The disaster tolerance mechanism is missing.
Disaster tolerance means that when an IT system stops working due to an accident (such as fire, earthquake, etc.), the entire application system can be switched to another location so that the system functions can continue to work normally. IPFS / Filecoin does not provide reliable disaster recovery and recovery mechanisms for storage users. Storage miners arecentrally handling disaster recovery backup and recovery works, resulting in an increase in storage space redundancy by 2–3 times.
  1. The storage performance is reduced by more than 60 times.
The IPFS data verification mechanism is too ideal and complex, and its storage performance is more than 60 times lower than that of a traditional centralized storage system. 1TB files usually need to be verified for more than 10 hours and cannot be stored normally and efficiently.
  1. Centralized technology architecture.
IPFS requires pretty advanced hardware, which leads to a very high threshold for joining its storage network. At present, only specialized storage devices can join the IPFS network as storage nodes. This means that IPFS initially advertised to users that connecting ordinary idle storage and reducing storage costs, has become a flubdub. It is difficult to store the entire network in a centralized structure in a disguised form, which cannot greatly reduce the storage cost of the entire network and ensure the security of the entire network.
  1. Due to the lack of the decentralized governance mechanism, its governance is too despotic, leading to a certain harm to the participated communities.
The above are the main obstacles currently hindering IPFS and Filecoin. The good news is that some of them can be improved and perfected, while some are design mechanism problems and cannot be fixed. Let’s take a look at another project initiated in the tech circle in 2017 — -HOP:
What is HOP
The HOP protocol provides a decentralized and completely anonymous traffic service for people all over the world based on block chain. HOP combines P2P network transmission and block chain technology to establish a block chain micro-payment protocol based on the block chain transmission encryption protocol between P2P network bandwidth contributors and bandwidth users, and merge it into traffic mining. In the mining pool side, the whole protocol is built on the main network, which has Micro Payment and mining functions. In addition, HOP also supports traffic mining of ERC20 in any currency. So far, HOP is the only protocol that combines the above functions and is officially available in commercial application. It can provide terminal nodes for secure access to decentralized networks.
HOP features and comparison with IPFS
HOP and IPFS have certain similarities. The following table is a comparison of the two projects in terms of technology and application characteristics:

https://preview.redd.it/d4klovzngmt51.png?width=1178&format=png&auto=webp&s=f14f0b2290430f6861f6da27f2d1e47ed196b741
Why HOP might be a phenomenal project in the future
Compared with the disadvantages of IPFS which are not supporting for hot data storage, low storage efficiency, low disaster tolerance and the high threshold of providing storage capacity, The advantages of HOP are summarized as follows:
  1. High operating efficiency.
The smart micro-payment system runs payments with unlimited TPS, and the efficiency is 90% higher than Ethereum.
  1. High level of open source. Supports all ERC-20 token access.
  2. Low threshold of participation.
Any participant who has a certain fundamental knowledge of computer science and network technology can set up mining pools and miners.
  1. High scalability.
It can be combined with Starlink satellites, repeaters, sim/esim cards and mobile phones in actual application scenarios to form a next-generation distributed interconnected communication network globally.
At present, most of the participants of HOP are top tier tech specialists, famous investors and politicians with global vision. We believe that projects like HOP, due to the open source and far-sighted technical foundation, which can not only achieve internal self-consistent circulation, but also integrate well with external ecology. Just as water conservancy is invisible, HOP has unlimited inclusiveness and scalability, and has a strong platform-level vitality!
We are looking forward to the accumulation of HOP, bringing a revolution in technology and applications to the blockchain and the practical universe!
submitted by Hayley_HOP to u/Hayley_HOP [link] [comments]

Filecoin | Development Status and Mining Progress

Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/5bqakdqgl3g51.jpg?width=865&format=pjpg&auto=webp&s=b709794863977eb6554e3919b9e00ca750e3e704
A decentralized storage network that transforms cloud storage into an account market. Miners obtain the integrity of the original protocol by providing data storage and / or retrieval. On the contrary, customers pay miners to store or distribute data and retrieve it.
Filecoin announced, that there will be more delays before its main network is officially launched.
Filecoin developers postponed the release date of their main network to late July to late August 2020.
As mentioned in a recent announcement, the Filecoin team said that the initiative completed the first round of the internal protocol security audit. Platform developers claim that the results of the review showed that they need to make several changes to the protocol’s code base before performing the second stage of the software testing process.
Created by Protocol Labs, Filecoin was developed using File System (IPFS), which is a peer-to-peer data storage network. Filecoin will allow users to trade storage space in an open and decentralized market.
Filecoin developers implemented one of the largest cryptocurrency sales in 2017. They have privately obtained over $ 200 million from professional or accredited investors, including many institutional investors.
The main network was slated to launch last month, but in February 2020, the Philly Queen development team delayed the release of the main network between July 15 and July 17, 2020.
They claimed that the outbreak of the Coronavirus (COVID-19) in China was the main cause of the delay. The developers now say that they need more time to solve the problems found during a recent codecase audit.
The Filecoin team noted the following:
“We have drafted a number of protocol changes to ensure that building our major network launch is safe and economically sound.” The project developers will add them to two different implementations of Filecoin (Lotus and go-filecoin) in the coming weeks.
Filecoin developers conducted a survey to allow platform community members to cast their votes on three different launch dates for Testnet Phase 2 and mainnet.
The team reported that the community gave their votes. Based on the vote results, the Filecoin team announced a “conservative” estimate that the second phase of the network test should begin by May 11, 2020. The main Filecoin network may be launched sometime between July 20 and August 21, 2020.
The updates to the project can be found on the Filecoin Road Map.
Filecoin developers stated:
“This option will make us get the most important protocol changes first, and then implement the rest as protocol updates during testnet.” Filecoin is back down from the final test stage.
Another filecoin decentralized storage network provider launched its catalytic test network, the final stage of the storage network test that supports the blockchain.
In a blog post on her website, Filecoin said she will postpone the last test round until August. The company also announced a calibration period from July 20 to August 3 to allow miners to test their mining settings and get an idea of how competition conditions affected their rewards.
Filecoin had announced earlier last month that the catalytic testnet test would precede its flagship launch. The delay in the final test also means that the company has returned the main launch window between August 31 and September 21.
Despite the lack of clear incentives for miners and multiple delays, Filecoin has succeeded in attracting huge interest, especially in China. Investors remained highly speculating on the network’s mining hardware and its premium price.
Mining in Filecoin
In most blockchain protocols, “miners” are network participants who do the work necessary to promote and maintain the blockchain. To provide these services, miners are compensated in the original cryptocurrency.
Mining in Filecoin works completely differently — instead of contributing to computational power, miners contribute storage capacity to use for dealing with customers looking to store data.
Filecoin will contain several types of miners:
Storage miners responsible for storing files and data on the network. Miners retrieval, responsible for providing quick tubes for file recovery. Miners repair to be carried out.
Storage miners are the heart of the network. They earn Filecoin by storing data for clients, and computerizing cipher directories to check storage over time. The probability of earning the reward reward and transaction fees is proportional to the amount of storage that the Miner contributes to the Filecoin network, not the hash power.
Retriever miners are the veins of the network. They earn Filecoin by winning bids and mining fees for a specific file, which is determined by the market value of the said file size. Miners bandwidth and recovery / initial transaction response time will determine its ability to close recovery deals on the network.
The maximum bandwidth of the recovery miners will determine the total amount of deals that it can enter into.
In the current implementation, the focus is mostly on storage miners, who sell storage capacity for FIL.

Hardware recommendations

The current system specifications recommended for running the miner are:
Compared to the hardware requirements for running a validity checker, these standards are much higher — although they definitely deserve it. Since these will not increase in the presumed future, the money spent on Filecoin mining hardware will provide users with many years of reliable service, and they pay themselves many times. Think of investing as a small business for cloud storage. To launch a model on the current data hosting model, it will cost millions of dollars in infrastructure and logistics to get started. With Filecoin, you can do the same for a few thousand dollars.
Proceed to mining
Deals are the primary function of the Filecoin network, and it represents an agreement between a client and miners for a “storage” contract.
Once the customer decides to have a miner to store based on the available capacity, duration and price required, he secures sufficient funds in a linked portfolio to cover the total cost of the deal. The deal is then published once the mine accepts the storage agreement. By default, all Filecoin miners are set to automatically accept any deal that meets their criteria, although this can be disabled for miners who prefer to organize their deals manually.
After the deal is published, the customer prepares the data for storage and then transfers it to the miner. Upon receiving all the data, the miner fills in the data in a sector, closes it, and begins to provide proofs to the chain. Once the first confirmation is obtained, the customer can make sure the data is stored correctly, and the deal has officially started.
Throughout the deal, the miner provides continuous proofs to the chain. Clients gradually pay with money they previously closed. If there is missing or late evidence, the miner is punished. More information about this can be found in the Runtime, Cut and Penalties section of this page.
At Filecoin, miners earn two different types of rewards for their efforts: storage fees and reward prevention.
Storage fees are the fees that customers pay regularly after reaching a deal, in exchange for storing data. This fee is automatically deposited into the withdrawal portfolio associated with miners while they continue to perform their duties over time, and is locked for a short period upon receipt.
Block rewards are large sums given to miners calculated on a new block. Unlike storage fees, these rewards do not come from a linked customer; Instead, the new FIL “prints” the network as an inflationary and incentive measure for miners to develop the chain. All active miners on the network have a chance to get a block bonus, their chance to be directly proportional to the amount of storage space that is currently being contributed to the network.
Duration of operation, cutting and penalties
“Slashing” is a feature found in most blockchain protocols, and is used to punish miners who fail to provide reliable uptime or act maliciously against the network.
In Filecoin, miners are susceptible to two different types of cut: storage error cut, unanimously reduce error.
Storage Error Reduction is a term used to include a wider range of penalties, including error fees, sector penalties, and termination fees. Miners must pay these penalties if they fail to provide reliability of the sector or decide to leave the network voluntarily.
An error fee is a penalty that a miner incurs for each non-working day. Sector punishment: A penalty incurred by a miner of a disrupted sector for which no error was reported before the WindowPoSt inspection.
The sector will pay an error fee after the penalty of the sector once the error is discovered.
Termination Fee: A penalty that a miner incurs when a sector is voluntary or involuntarily terminated and removed from the network.
Cutting consensus error is the penalty that a miner incurs for committing consensus errors. This punishment applies to miners who have acted maliciously against the network consensus function.
Filecoin miners
Eight of the top 10 Felticoin miners are Chinese investors or companies, according to the blockchain explorer, while more companies are selling cloud mining contracts and distributed file sharing system hardware. CoinDesk’s Wolfe Chao wrote: “China’s craze for Filecoin may have been largely related to the long-standing popularity of crypto mining in the country overall, which is home to about 65% of the computing power on Bitcoin at discretion.”
With Filecoin approaching the launch of the mainnet blocknet — after several delays since the $ 200 million increase in 2017 — Chinese investors are once again speculating strongly about network mining devices and their premium prices.
Since Protocol Labs, the company behind Filecoin, released its “Test Incentives” program on June 9 that was scheduled to start in a week’s time, more than a dozen Chinese companies have started selling cloud mining contracts and hardware — despite important details such as economics Mining incentives on the main network are still endless.
Sales volumes to date for each of these companies can range from half a million to tens of millions of dollars, according to self-reported data on these platforms that CoinDesk has watched and interviews with several mining hardware manufacturers.
Filecoin’s goal is to build a distributed storage network with token rewards to spur storage hosting as a way to drive wider adoption. Protocol Labs launched a test network in December 2019. But the tokens mined in the testing environment so far are not representative of the true silicon coin that can be traded when the main network is turned on. Moreover, the mining incentive economics on testnet do not represent how final block rewards will be available on the main network.
However, data from Blockecoin’s blocknetin testnet explorers show that eight out of 10 miners with the most effective mining force on testnet are currently Chinese miners.
These eight miners have about 15 petabytes (PB) of effective storage mining power, accounting for more than 85% of the total test of 17.9 petable. For the context, 1 petabyte of hard disk storage = 1000 terabytes (terabytes) = 1 million gigabytes (GB).
Filecoin craze in China may be closely related to the long-standing popularity of crypt mining in the country overall, which is home to about 65% of the computing power on Bitcoin by estimation. In addition, there has been a lot of hype in China about foreign exchange mining since 2018, as companies promote all types of devices when the network is still in development.
“Encryption mining has always been popular in China,” said Andy Tien, co-founder of 1475, one of several mining hardware manufacturers in Philquin supported by prominent Chinese video indicators such as Fenbushi and Hashkey Capital.
“Even though the Velikoyen mining process is more technologically sophisticated, the idea of mining using hard drives instead of specialized machines like Bitcoin ASIC may be a lot easier for retailers to understand,” he said.
Meanwhile, according to Feixiaohao, a Chinese service comparable to CoinMarketCap, nearly 50 Chinese crypto exchanges are often somewhat unknown with some of the more well-known exchanges including Gate.io and Biki — have listed trading pairs for Filecoin currency contracts for USDT.
In bitcoin mining, at the current difficulty level, one segment per second (TH / s) fragmentation rate is expected to generate around 0.000008 BTC within 24 hours. The higher the number of TH / s, the greater the number of bitcoins it should be able to produce proportionately. But in Filecoin, the efficient mining force of miners depends on the amount of data stamped on the hard drive, not the total size of the hard drive.
To close data in the hard drive, the Filecoin miner still needs processing power, i.e. CPU or GPU as well as RAM. More powerful processors with improved software can confine data to the hard drive more quickly, so miners can combine more efficient mining energy faster on a given day.
As of this stage, there appears to be no transparent way at the network level for retail investors to see how much of the purchased hard disk drive was purchased which actually represents an effective mining force.
The U.S.-based Labs Protocol was behind Filecoin’s initial coin offer for 2017, which raised an astonishing $ 200 million.
This was in addition to a $ 50 million increase in private investment supported by notable venture capital projects including Sequoia, Anderson Horowitz and Union Square Ventures. CoinDk’s parent company, CoinDk, has also invested in Protocol Labs.
After rounds of delay, Protocol Protocols said in September 2019 that a testnet launch would be available around December 2019 and the main network would be rolled out in the first quarter of 2020.
The test started as promised, but the main network has been delayed again and is now expected to launch in August 2020. What is Filecoin mining process?
Filecoin mainly consists of three parts: the storage market (the chain), the blockecin Filecoin, and the search market (under the chain). Storage and research market in series and series respectively for security and efficiency. For users, the storage frequency is relatively low, and the security requirements are relatively high, so the storage process is placed on the chain. The retrieval frequency is much higher than the storage frequency when there is a certain amount of data. Given the performance problem in processing data on the chain, the retrieval process under the chain is performed. In order to solve the security issue of payment in the retrieval process, Filecoin adopts the micro-payment strategy. In simple terms, the process is to split the document into several copies, and every time the user gets a portion of the data, the corresponding fee is paid. Types of mines corresponding to Filecoin’s two major markets are miners and warehousers, among whom miners are primarily responsible for storing data and block packages, while miners are primarily responsible for data query. After the stable operation of the major Filecoin network in the future, the mining operator will be introduced, who is the main responsible for data maintenance.
In the initial release of Filecoin, the request matching mechanism was not implemented in the storage market and retrieval market, but the takeover mechanism was adopted. The three main parts of Filecoin correspond to three processes, namely the stored procedure, retrieval process, packaging and reward process. The following figure shows the simplified process and the income of the miners:
The Filecoin mining process is much more complicated, and the important factor in determining the previous mining profit is efficient storage. Effective storage is a key feature that distinguishes Filecoin from other decentralized storage projects. In Filecoin’s EC consensus, effective storage is similar to interest in PoS, which determines the likelihood that a miner will get the right to fill, that is, the proportion of miners effectively stored in the entire network is proportional to final mining revenue.
It is also possible to obtain higher effective storage under the same hardware conditions by improving the mining algorithm. However, the current increase in the number of benefits that can be achieved by improving the algorithm is still unknown.
It seeks to promote mining using Filecoin Discover
Filecoin announced Filecoin Discover — a step to encourage miners to join the Filecoin network. According to the company, Filecoin Discover is “an ever-growing catalog of numerous petabytes of public data covering literature, science, art, and history.” Miners interested in sharing can choose which data sets they want to store, and receive that data on a drive at a cost. In exchange for storing this verified data, miners will earn additional Filecoin above the regular block rewards for storing data. Includes the current catalog of open source data sets; ENCODE, 1000 Genomes, Project Gutenberg, Berkley Self-driving data, more projects, and datasets are added every day.
Ian Darrow, Head of Operations at Filecoin, commented on the announcement:
“Over 2.5 quintillion bytes of data are created every day. This data includes 294 billion emails, 500 million tweets and 64 billion messages on social media. But it is also climatology reports, disease tracking maps, connected vehicle coordinates and much more. It is extremely important that we maintain data that will serve as the backbone for future research and discovery”.
Miners who choose to participate in Filecoin Discover may receive hard drives pre-loaded with verified data, as well as setup and maintenance instructions, depending on the company. The Filecoin team will also host the Slack (fil-Discover-support) channel where miners can learn more.
Filecoin got its fair share of obstacles along the way. Last month Filecoin announced a further delay before its main network was officially launched — after years of raising funds.
In late July QEBR (OTC: QEBR) announced that it had ceded ownership of two subsidiaries in order to focus all of the company’s resources on building blockchain-based mining operations.
The QEBR technology team previously announced that it has proven its system as a Filecoin node valid with CPU, GPU, bandwidth and storage compatibility that meets all IPFS guidelines. The QEBR test system is connected to the main Filecoin blockchain and the already mined filecoin coin has already been tested.
“The disclosure of Sheen Boom and Jihye will allow our team to focus only on the upcoming global launch of Filecoin. QEBR branch, Shenzhen DZD Digital Technology Ltd. (“ DZD “), has a strong background in blockchain development, extraction Data, data acquisition, data processing, data technology research. We strongly believe Filecoin has the potential to be a leading blockchain-based cryptocurrency and will make every effort to make QEBR an important player when Mainecoin mainnet will be launched soon”.
IPFS and Filecoin
Filecoin and IPFS are complementary protocols for storing and sharing data in a decentralized network. While users are not required to use Filecoin and IPFS together, the two combined are working to resolve major failures in the current web infrastructure.
IPFS
It is an open source protocol that allows users to store and transmit verifiable data with each other. IPFS users insist on data on the network by installing it on their own device, to a third-party cloud service (known as Pinning Services), or through community-oriented systems where a group of individual IPFS users share resources to ensure the content stays live.
The lack of an integrated catalytic mechanism is the challenge Filecoin hopes to solve by allowing users to catalyze long-term distributed storage at competitive prices through the storage contract market, while maintaining the efficiency and flexibility that the IPFS network provides.
Using IPFS
In IPFS, the data is hosted by the required data installation nodes. For data to persist while the user node is offline, users must either rely on their other peers to install their data voluntarily or use a central install service to store data.
Peer-to-peer reliance caching data may be a good thing as one or multiple organizations share common files on an internal network, or where strong social contracts can be used to ensure continued hosting and preservation of content in the long run. Most users in an IPFS network use an installation service.
Using Filecoin
The last option is to install your data in a decentralized storage market, such as Filecoin. In Filecoin’s structure, customers make regular small payments to store data when a certain availability, while miners earn those payments by constantly checking the integrity of this data, storing it, and ensuring its quick recovery. This allows users to motivate Filecoin miners to ensure that their content will be live when it is needed, a distinct advantage of relying only on other network users as required using IPFS alone.
Filecoin, powered by IPFS
It is important to know that Filecoin is built on top of IPFS. Filecoin aims to be a very integrated and seamless storage market that takes advantage of the basic functions provided by IPFS, they are connected to each other, but can be implemented completely independently of each other. Users do not need to interact with Filecoin in order to use IPFS.
Some advantages of sharing Filecoin with IPFS:
Of all the decentralized storage projects, Filecoin is undoubtedly the most interested, and IPFS has been running stably for two years, fully demonstrating the strength of its core protocol.
Filecoin’s ability to obtain market share from traditional central storage depends on end-user experience and storage price. Currently, most Filecoin nodes are posted in the IDC room. Actual deployment and operation costs are not reduced compared to traditional central cloud storage, and the storage process is more complicated.
PoRep and PoSt, which has a large number of proofs of unknown operation, are required to cause the actual storage cost to be so, in the early days of the release of Filecoin. The actual cost of storing data may be higher than the cost of central cloud storage, but the initial storage node may reduce the storage price in order to obtain block rewards, which may result in the actual storage price lower than traditional central cloud storage.
In the long term, Filecoin still needs to take full advantage of its P2P storage, convert storage devices from specialization to civil use, and improve its algorithms to reduce storage costs without affecting user experience. The storage problem is an important problem to be solved in the blockchain field, so a large number of storage projects were presented at the 19th Web3 Summit. IPFS is an important part of Web3 visibility. Its development will affect the development of Web3 to some extent. Likewise, Web3 development somewhat determines the future of IPFS. Filecoin is an IPFS-based storage class project initiated by IPFS. There is no doubt that he is highly expected.
Resources :
  1. https://www.coindesk.com/filecoin-pushes-back-final-testing-phase-announces-calibration-period-for-miners
  2. https://docs.filecoin.io/mine/#types-of-miners https://www.nasdaq.com/articles/inside-the-craze-for-filecoin-crypto-mining-in-china-2020-07-12؟amp
  3. https://www.prnewswire.com/news-releases/qebr-streamlines-holdings-to-concentrate-on-filecoin-development-and-mining-301098731.html
  4. https://www.crowdfundinsider.com/2020/05/161200-filecoin-seeks-to-boost-mining-with-filecoin-discove
  5. https://zephyrnet.com/filecoin-seeks-to-boost-mining-with-filecoin-discove
  6. https://docs.filecoin.io/introduction/ipfs-and-filecoin/#filecoin-powered-by-ipfs
submitted by CoinEx_Institution to filecoin [link] [comments]

08-12 22:05 - 'Why Bitcoin Will Win: The Bearish Case for Ethereum' (self.Bitcoin) by /u/uncapslock removed from /r/Bitcoin within 207-217min

'''
Hi Everyone! If you were around for the 2017 bull cycle, you might remember me from:
[[link]6
With the advent of DeFi, I wanted to crystalize my thoughts on why Bitcoin will win in the end.

Why Bitcoin Will Win: The Bearish Case for Ethereum

Ethereum is the MySpace of decentralized finance. Hobbled together, scrappy, but provides an exciting glimpse into the future. We should be pleased with the new paradigms discovered through this experiment but should not expect it to be the de facto platform in a decade.
Ethereum has demonstrated intrinsic challenges that are insurmountable without an Ethereum 2. We have witnessed unauditability, scaling difficulties, centralization and high contract fees. Building second-layer solutions to make up for shortcomings is akin to patching cracks in the asphalt with duct tape.
In this piece, I’ll navigate why we should not confuse novelty of features for sustainable value, why Ethereum makes for a poor base layer, and what to expect in the decade ahead.
There will only be one base layer for digital scarcity of humanity and that is Bitcoin.

The “Bitcoin is money, Ethereum is apps” fallacy

There is a logical fallacy in arguing “Bitcoin is money, Ethereum is apps,” which draws a false equivalence between the value of money and apps. As any self-respecting financier knows, the value lies (quite literally) where wealth is stored.
“Applications are cheap. A store of wealth is expensive.”
Building applications is a solved problem.
We know how to recruit engineers, build organizations and assemble technical solutions. We have a bevy of technologies that provide affordances for user interfaces. We have best practices for effective engineering. We even have strategies for amplifying creativity during brainstorming.
The number of pages on CoinMarketCap.com is a testament to the commonality of applications.
What is not solved is building applications on top of a store of wealth.
In order to build applications on top of a store of wealth, you either appropriate an existing store of wealth and build on top of it (i.e. Plaid) or you build a new store of wealth (Bitcoin).
Building a digital store of wealth is so hard it has taken over half a century and is still not ready. The digital store of wealth is only ready when it stores a nontrivial portion portion of global wealth.
On August 11, 2020, MicroStrategy announced it had acquired 21,454 Bitcoin for $250 million. A single company bought the equivalent of all Bitcoin in Ethereum that day.
Building an application on Ethereum today is the worst of both worlds. It builds on a burgeoning new store of value with a tiny addressable market on top of a limited capacity network already showing strains.
The vast majority of global wealth is still outside of the system, waiting to designate a digital store of value.
Conceding that Bitcoin is the better store of value is conceding Bitcoin will be the disproportionate beneficiary of global wealth entering the system.

So where do applications fit in?

Imagine acquiring a bank. You are given a choice to either acquire the trillion dollars under management and no app or a smooth, slick app but not the financial assets.
It’s easier to make a new application where users are already present rather than move users to a new platform with an existing application. As we’ve seen in the previous section, most users will be on Bitcoin utilizing its value as a store of wealth.
“Applications will be built where wealth is stored.”
What we’ll see is the best ideas from current generation of DeFi applications (elastic supply, governance, fair distribution mechanisms, auditability) built into layer 2 solutions of Bitcoin that itself sits on top of multiple trillions of dollars of global wealth.
Why will this happen? Builders will note applications of value from the small pond of Ethereum and see a market opportunity to natively expose those features to the much larger accounts in Bitcoin, reaping proportionally higher revenue.

Why can’t we use Ethereum as a store of value?

“If native users of a platform are so important, why can’t we just use Ethereum as a store of value? After all, holders of Ethereum have seen much higher appreciation in value since its founding compared to Bitcoin.”
Here we refer back to the [“The Bullish Case for Bitcoin”]2 which lays out the core properties of money of which three critical areas Ethereum is weak against Bitcoin.

Verifiability

As we see in the indefatigable investigation by [Pierre Rochard]3 in his epic quest to audit Ethereum’s supply limit, verifying the total number of Ethereum is not a trivial task.
A number of supply adjustments had been made in node software instead of on-chain transactions, intermediate miner rewards calculated using uncles that are not finalized for a number of blocks, selfdestruct() that leaves ambiguity for token inactivity.
These factors make it impossible to have an objective measure without specifying an asterisk of the nuances appropriated for each method of calculation.
Lack of auditability makes Ethereum a nonstarter for firms desiring a store of value. Without an objective measure of supply comes an impossibility of assessing the value of your asset.
From measurement of the Ethereum supply through scripts, it has been hypothesized that there has been at least one inflation bug that has been exploited: [*[link]7

Scarcity

There is no set limit of Ethereum by design. From inception it was designed to be an inflationary currency which is essential as a utility token executing applications but is fatal for a store of value.
There is an ongoing effort to curtail Ethereum’s inflation to appease to its holders which will be to its detriment as use as an application platform.
This tension between being an appreciating digital asset and utilization as fuel is intrinsic to Ethereum and cannot be removed. When Ethereum prices go up by a factor of ten, only smart contracts that can provide commensurate proportional value will be viable.
“Using Ethereum as a store of value creates a perverse relationship with increasing contract fees that undermine its value as an application network.”
As the price rises further, we will see the majority of use cases today become priced out, adding platform risk where users will now need to worry whether they will be able to get their assets back out in the event of Ethereum appreciation.

Censorship Resistance

It is an open secret that Infura is the defacto backend for Ethereum. Running a full Ethereum node is known and accepted to be an arduous task with astronomical processor requirements.
This problem is getting worse, not better as the system struggles with transaction volume today, much less the several magnitudes of transactions needed in the coming decade.
The solution provided is running Ethereum 2 and implementing applications on a second layer of Ethereum. This shifts the conversation to if building a new base layer or building on a second layer is necessary, what benefit is there to retain Ethereum as a base layer?

A Look Back from 2030

When we look back to 2017–2021, we will remember this period as the primordial era of where creative entrepreneurs came together to experiment with the new paradigm of permission-less smart contracts.
We will see a meaningful portion of global wealth go into Bitcoin by 2024 raising assets under management to a trillion dollars. Companies will convert overseas holdings into Bitcoin to counter inflationary risk for sovereign currencies. Smaller nation-states will start to acquire a reserve of Bitcoin to counter dollar strength to pay off their dollar-denominated debt.
During this time, firms small and large will rush to build applications to service wealth stored in Bitcoin on layer 2 and layer 3 solutions. Many of these applications will be inspired by what is currently built on top of Ethereum but addressing a much larger market.
Through two more halvings by 2030, everyone will have a Bitcoin account providing both a store of value as well as a unified platform that provides the largest installed userbase for financial products. We'll be ending the decade with 10M per Bitcoin, (one magnitude increase each for the three halving periods: 2020-2024, 2024-2028, 2028-2032) with Bitcoin serving as the generational store of wealth for those with the foresight to stack sats and hodl.

Tips for Builders

You’re not late. In fact you’re incredibly early. We’re still building the store of value that will be the foundation to the financial apps that you’ll build. Ethereum is a nice environment for experimenting with new paradigms that are made possible through smart contracts.
But understand that the bulk of your future customers will be onboarding onto a different platform when they do arrive. There will be a bonanza period where we see thousands of companies and millions of retail users adopting Bitcoin.
It’ll be up to you to recognize the arbitrage opportunity to offer product features in native Bitcoin format to beat other products that must employ bridges to access wealth stored in Bitcoin.

About Me

For future writing, [you can follow me on Twitter at @uncapslock]5 .
This article is for information purposes only and is not intended to be investment advice.
'''
Why Bitcoin Will Win: The Bearish Case for Ethereum
Go1dfish undelete link
unreddit undelete link
Author: uncapslock
1: www.red*it.co***/Bi*coin/*om**n*s/6h4*1i/why_i*sol*_all_***e*h*reum_*oda**an*_convert*d_i*/ 2: medium.c*m/@*i*a*bo*apati/t*e*bu*l*sh*case-for-*it*oin*6ecc8*de*c* 3: tw*t*e**com/pierre_*o*hard 4: *w*tte*.***/GeistLight/st*tus/1*926*756*3801390** 5: t*itt**.*om/uncap**ock 6: ww**r**di**com*Bitcoin/comments/6h4**i/why\_*\_***d\*al*\_my*_eth*re*m\*today\*and*_*onve*te*\_it/**^1 7: twitter.com/*eistLi*h*/s*a*u*/*29*6475***801390***]^^4
Unknown links are censored to prevent spreading illicit content.
submitted by removalbot to removalbot [link] [comments]

BitOffer institute: Ethereum miners' daily earnings soared 60%, ETF earning over 85 times

BitOffer institute: Ethereum miners' daily earnings soared 60%, ETF earning over 85 times

https://preview.redd.it/95910ilvizd51.png?width=696&format=png&auto=webp&s=6681449d66d95faa67159454fe7faff49b4d7df8
On June 27, Ethereum miners earned about $1.85 per 100 (MH/s) per day. In the past month, especially in the last two weeks, the income rose by 60%, reaching a peak of $3.27 per 100 MH/s on July 25, before falling back to around $3.
Over the same period, the price of ETH has risen more than 40%, from $229 on June 27 to $327.99, which is a new high for 2020.
On July 22, the total market value of decentralized Financial DeFi passed $11.5 billion. The massive hype of DeFi caused a surge in trading volume in ETH, which, along with the surge in trading volume from ETH, pushed miners’ daily income to its highest level in two years.
Etherscan, a blockchain browser, shows that the entire computing power of the Ethereum blockchain, the world’s second-largest by market value, has been stable at around 190 petahash per second. Indeed, data from Bitinfocharts show that in the first quarter of this year, Ethereum’s daily mining revenue was below $2 per 100 MH/s before falling to $1 per 100 MH/s on March 12 after the cryptographic market collapsed. Ethereum’s daily mining revenues have tripled in recent months.
Currently, some of the most advanced ETH mining equipment, such as the core A10 Pro, which has a 500-megabit hash per second (MH/s) computing power and a power ratio of 1.9w/m, generates $13 per day at Ethereum’s current price and mining difficulty. Based on the miner’s profitability level, and A10 Pro Ethereum miner’s daily power consumption is about 1.1 dollars, and its daily net profit is nearly 12 dollars.
Even though bitcoin’s price topping $11,000 for the first time since September 2019, the difficulty of mining bitcoin remains at an all-time high. As a result, even the most efficient bitcoin miners, such as MicroBT’s WhatsMiner M30S ++ and Bitmaint’s AntMiner S19 Pro, generate $9 in daily income. Based on the current price of bitcoin and the difficulty of mining it, a more efficient Bitcoin miner (within 40w/T power ratio) generates about $6.50 in net profits per day. Ethereum miners earn about $13 a day, which is twice as Bitcoin miners.
Since the launch of DeFi, it has received a lot of attention from investment institutions and individual investors. Currently, DeFi Wallet has been downloaded more than 5,000 times, far more than any other type of DAPP, it is the number one DAPP developed based on Ethereum. According to the popularity and the current download speed, in the next few months, the downloading number will break through 6000 and bring a sufficient number of volumes for the ETH. Meanwhile, as the ETH 2.0 launch date approximation, these two advantages will boost the price of ETH, the income of the ETH miners will be at the appointed time with increased, which gradually widening the income gap with BTC miner.
It is the best time to invest in Ethereum.
However, buying BitOffer’s Ethereum ETF Ethereum is better than buying a future, in which profits start at a minimum of three times. Besides, it also includes an intelligent dynamic position reallocation mechanism and the calculation of fund compound interest with the returns of up to 17 times.
In the latest week, the Ethereum ETF (ETH3X) has jumped 160% from a peak of $6 to $16, according to data analysis from the BitOffer Exchange. With the launch of DeFi and ETH 2.0, once Ethereum rises more than fivefold over the next few months, the ETH3X could rise as much as 85 times.
If you buy Ethereum for $10,000, and ETH goes up fivefold, you can maximum make a fivefold profit, Which from $10,000 to $50,000. But buying ETH3X is a different story. Once Ethereum increases fivefold, you can make up to 85 times, which would be from $10,000 to $850,000, the 17 times than buying futures, more than over $800,000. Buying the Ethereum ETF would be a better deal.
submitted by Bitoffer_Official to BitOffer_Official [link] [comments]

Sharering (SHR) I believe this one is going to surprise so many. Already generating revenue and doing buybacks every week. Already over 10 000 registered users. Mainnet + app + masternodes and staking before EOY.

I got this stuff from Steve Aitchison, he wrote this review and posted it on Uptrennd. Figured I should put it on here as well since I truly believe this is an incredible moonshot. I'm personally holding SHR myself and am very convinced it will do extremely well.
Give a read through it and you will immediatly see why. Enjoy guys.
Introduction
Imagine for a second the following scenario. You are a 2 car family. One car is used every day going back and forth to work, for shopping, all the little jaunts you and your husband like to go on. Your grown children are at university and come home for the weekends so the other car sits in the driveway all week and doesn’t get used during the week. What a waste of a perfectly good car. You think to yourself we could put that car to good use and actually help to pay for university fees, by renting it out during the week. However, then you think “well it’s only a little Ford Fiesta who’s going to want to rent that.” Well, it turns out a lot of people want to rent it and for a good price: £34 ($40) per day, a possible $800 per month.
Peer to peer car sharing has grown massively over the last few years and people are making serious money by letting our vehicles on a daily basis, emulating the Airbnb model. In fact companies like Turo, Getaround and Drivy, which has just been acquired by Getaround for $300 Million, are bringing in serious investors like Toyota, Softbank Vision Fund, Menlo Ventures, and IAC to the tune of over $800 Million.
A key difference between rental companies and peer to peer is that they have vastly improved technology with app interfaces that make locating assets and resources, reserving and using them, and making payment convenient and seamless. This, combined with location-specific analytics, allows by-the-minute access to assets and resources (e.g. cars or bicycles) and enables customers to pick up and drop these assets where and when convenient.
Car sharing is just one example of an industry that is being disrupted. We have seen, experienced and read about the amazing growth of Airbnb which is now estimated to be valued at $38 Billion. Airbnb has been so successful that companies like booking.com are trying to get in on the act by adopting a similar model when it comes to booking accommodation.
There is also the phenomenal rise of bicycle rentals which we see in cities all over the world, not quite the same as peer to peer sharing, but it’s another rental model that is ripe for being disrupted by the new sharing model.
With this business model in mind what other areas could it be used in:
Transport: Used for the rental of cars, trucks, scooters, trailers, and even heavy vehicles. Delivery Drivers: Facilitate booking and payment for delivery drivers. Agriculture: Garden sharing, seed swap, bee-hive relocation, etc. Finance: Peer to peer lending Food bank, social dining Travel Tours, shared tour groups Real Estate Airbnb, co-housing, co-living, Couchsurfing, shared office space, house swapping. Time: Labour, co-working, freelancing Assets Book swapping, clothes swapping, fractional ownership, freecycling, toy libraries. Transportation Car sharing, ride-sharing, car-pooling, bicycle sharing, delivery company, couriers And so much more!
This newly emerging, but highly fragmented sharing industry, is currently worth over $100 billion. It is predicted to grow to at least $335 billion by 2025.
As you can see from a few examples above the sharing economy has a lot of room to grow but what it doesn’t have, yet, is a company who can facilitate ALL of the above use cases in one place.
That is until now!
ShareRing is disrupting the disruptors by bringing everything together in one place and making it easy for you and me to share anything and everything and making it as easy as opening an app on your phone.
Business Case
The sharing market has exploded over the last several years. This is due, in part, to the digital age we live in, as we now have over 2.82 Billion people with smart phones around the world. It also due to how easy the business model of sharing lends itself to the digital world, and how with the simple installation of an app we can access a plethora of markets to rent almost anything from.
Due to this rise of digital platforms and the proliferation of smartphones, revenues coming from sharing economy platforms are only expected to increase. It is estimated to grow to a $335 billion industry in 2025, compared to its $14 billion value in 2014. (PwC UK).
The beauty of the sharing economy is that it is a win/win/win situation for the person who wants to rent something for a few days or weeks, the person who is renting out, and the company who facilitates the ease of the transactions between the renter and the person renting out. Typically the renter will save a lot of money whilst renting out someone else’s apartment, car, bicycle, clothes, dog sitting services etc and they can almost be assured of quality due to the social side of the business model with reviews from real people. The person who is renting out can make additional income and will want good reviews and therefore keep the standard of service higher. The company that is facilitating all of this can make a lot of money on transaction fees, as well as from advertising, and partnership deals, and obviously have an exit strategy for possible buyouts.
When it comes to looking at the business model, ShareRing fits in to the Commission Based Platform as described in Ritter and Schanz study where they looked at the core difference in difference business models of the sharing economy: Singular Transaction Models, Subscription-Based Models, Commission-Based Platforms and Unlimited Platforms.)
Commission Based Platforms are dominated by (at least) triadic relationships amongst providers, intermediaries and consumers with a utility-bound revenue stream. These business models enable their customers to switch between provider and consumer roles by creating and delivering the value proposition. Only a few employees work for the intermediary and the value creation and delivery is externalized. From a consumer perspective, consumers are empowered to collaborate with each other and to design the collaboration terms by negotiating the terms and conditions of the content, creation, distribution and consumption of the value proposition. Depending on the orientation of the value proposition, consumers purchase commodities (Tauschticket, ebay), access commodities in a defined timespan (booking.com, Airbnb) or buy services (uber, turo) from occasional and professional providers found via an intermediary. The intermediary mainly focuses on nurturing a community feeling and reducing exchange insecurity by incorporating rating systems, micro-assurances and standardizations of payment and delivery into the platform. The platform mainly takes commissions for successful matching and executing trade. (Journal of Cleaner Production Volume 213, 10 March 2019, Pages 320-331)
The USP of the ShareRing Business Model
The USP that ShareRing has is that it brings all of the different forms of sharing together in one app through partnerships and onboarding of users.
No other company, to date, is bringing everything together in such a way. However there are other factors that make ShareRing unique, which we will look at.
Token Economics
SHR is a utility token and will be used to pay for transactions on the network, such as 'new booking', 'add asset', etc. SHR is used by providers to pay for their access to the ShareLedger blockchain, including the addition of assets, renting out of assets, adding attributes, adding smart contracts, and other features.
SharePay (SHRP) is used by customers to pay for the rental of assets.
Masternodes will also be a main feature of the SHR token. When a transaction fee is incurred, it will be distributed in a way that allows for masternode holders who provide a service to the platform to receive a reward from each transaction. Transaction fees are charged to sharing providers in SHR. The distribution of transaction fees will be as follows: 50% - will be distributed amongst the active masternode holders who host an active node on the blockchain at that point in time (these holders provide a service to the platform). The distribution will be based on a calculation of the Total Amount Staked and the total continuous uptime of the node. 50% - will be provided to ShareRing Ltd (view ShareRing owned masternodes) for various purposes that contribute to working capital and platform growth.
Leased Proof of Stake Consensus
ShareRing have chosen the Leased Proof-of-Stake protocol as the consensus algorithm for ShareLedger. This choice is based on the practicality and security benefits evident in the Waves platform. It is also much more cost effective than Proof-of-Work (POW), and will not suffer from the current issues Bitcoin and other POW cryptocurrencies are facing such as scalability and electricity consumption.
As explained above master nodes will be a main feature but there is the other feature of lightweight nodes. A user with a lightweight node will be able to stake their tokens to a full node of their choosing and participate in reaching consensus. They will also be free to cancel their leasing at any time as there are no contracts or freezing periods. The more tokens that have been staked in a full node, the higher the probability the node will have in producing the next block. Since the reward is given based on the total number of tokens staked in the full node, there will always be a trade-off between the size of the full node and the percentage of the reward. As an average user of the platform, you will not need to have technical knowledge on how to set up a node nor will you have to download the entire blockchain in order to stake your tokens. Only a user who sets up a full node will be required to do this, making it simpler than ever for users to earn a reward for supporting the platform.
The return expected for staking is expected to be around 6 - 8% although this has yet to be confirmed.
Buybacks
ShareRing are currently implementing a series of buybacks which started in the beginning of November:
The buyback operation is done at a random time during the week.
If there is enough liquidity, SHR tokens will be bought through a single market order at the time of buyback. In case there is not enough liquidity, a limit buy order at last sell order price will be placed on the market, and will remain open until it gets filled.
The buyback program was implemented to test the API purchase process for when live transactions occur on ShareLedger
The Buyback Program is expected to:
  1. Reduce the supply of ShareTokens available in both public and private markets
  2. Bring New capital and fund inflows into the Shareledger
  3. Substantially magnify value creation for the ShareToken holders
The Token Flow
ShareRing will bring in hundreds of merchants to list their rental products, either exclusively or as part of an aggregator system e.g. When you look at the likes of trivago.com they will list the best hotel prices from multiple merchants who are listed on their website. Essentially ShareRing will become part of the aggregator ecosystem and be listed on sites like trivago.com as well as have exclusive agreements with merchants who are listed directly on their app.
ShareRing’s USP is that they have everything on one place as well as their OneID module with means buyers can get a hotel, rent a car, rent their ski equipment, book events all through the one app and using the OneID.
With that in mind they are going to attract a lot of merchants.
This is where it gets exciting so pay attention to this part.
When a merchant is part of the ShareRing ecosystem and a buyer rents something from that merchant ShareRing will take a small % commission from that transaction. So say someone books a hotel for $100 for the night, ShareRing might take $0.50 as a commission. What ShareRing will then do is go to one of the exchanges that ShareRing (SHR) is listed on and buy SHR tokens directly using an API system using USDT.
Now, the actual commission has not been disclosed yet however if we assume even a 0.25% commission that means for every $100 Million worth of bookings made through the app will net ShareRing $250,000 which means buy backs of $250,000 for the SHR token, which increases the liquidity of SHR on the exchanges.
If you think $100 Million of bookings is a lot, booking.com customers book around 1.5 Million rooms per day, if we estimate an average of $50 per room that is $75 million of bookings PER DAY or $2 Billion worth of bookings per month.
This revenue coupled with revenue from OneID and eVOA makes ShareRing profitable almost from day one of the app going live.
OneID And eVOA
Another exciting development from the ShareRing team is the collaboration between ShareRings Self Sovereign Identity protocol and third party providers to bring OneID and eVOA which will utilise OneID
With the huge rise in E-commerce and with over 2.82 billion people who now own a smartphone we are entrusting our personal information to more and more centralised entities. These entities are frequently hacked and our information is leaked to outside parties.
ShareRing aims to tackle this with their service OneID module.
ShareRing’s OneID solution protects users' data by handling Know Your Customer (KYC) information through third parties and ShareRing’s Self Sovereign Identity Protocol. ShareRing does not hold any identifying information anywhere on its servers. It provides the ultimate security for the renter and also the provider, as the Protocol encrypts and stores your data in a secure manner within your device. Essentially, this means that it is near impossible for a hack or data leak to happen, simply because there is no centralized server of data for hackers to exploit.
The OneID module is very easy to use. The end-user needs to complete their ID submission only once, with the entire submission process requiring less than two minutes to complete. Once this step has been completed, the customers KYC is destroyed by the 3rd party document verification system and the OneID module allows merchants to verify a customer’s identity via a hashed verification packet, stored on the users device and ShareLedger. This removes the need for merchants to store or see personal information; safeguarding both merchants and users from fraud.
To create your ShareRing OneID, simply:
  1. Take a picture of your government ID document
  2. Take a selfie
  3. Confirm and submit your details
This is something I am really excited about for ShareRing and they already have made partnerships for other companies to use this feature which is another income stream for ShareRing.
eVOA
E-Visa On Arrival allows applicants to apply online and receive a travel authorisation before departure – this eVOA can be shown at dedicated Thailand immigration counters on arrival at major Thailand airports, allowing travellers to pass through in minutes.
OneID system is scheduled to become the lynchpin technology in Thailand’s electronic Visa On Arrival (eVOA) system; one of only two companies to partner with Thai authorities to provide this service. The new Visa system eliminates much of the hassle involved in entering the country:
This is a strong validation of the OneID system - immigration controls are some of the most scrutinized processes in any branch of government, and if the OneID solution can operate to their standards then it is truly business-ready. As explained by our COO, Rohan Le Page:
“We are providing our OneID product for Thailand e-VOA (Visa On Arrival) that allows 5 Million travellers from 20 countries including China and India to complete the visa process on their mobile through our app. This provides a streamlined immigration process that negates the need for an expensive and time-consuming process when you get off the plane. Additionally, fraud is mitigated with several extra layers of security in the back end including our blockchain (ShareLedger) consensus model that makes all data immutable and all but impossible to hack.”
Profit Margins on OneID
So how does ShareRing make money from OneID and eVOA?
With each application for an eVOA using the OneID module ShareRing will make an undisclosed commission. The e-VOA is available to citizens of 21 different countries and is intended for those who will be holidaying in Thailand and not working in the country.
This means that each eVOA will last for a period of around 15 days which effectively means that ShareRing will get commission multiple times from each person travelling to one of the 21 countries listed below:
Andorra, Bhutan, Bulgaria, China, Ethiopia, Fiji, India, Kazakhstan, Latvia, Lithuania, Maldives, Malta, Mauritius, Papua New Guinea, Republic of Cyprus Romania, San Marino, Saudi Arabia, Taiwan, Ukraine, Uzbekistan
The profits on this alone, according to projections, are worth millions of dollars per year to ShareRing, with a healthy growth of about 35% in raw profit over the next 5 years, ultimately netting the company about $1.5 million profit per quarter.
The ShareLedger Blockchain Platform
ShareRing will utilize the registered intellectual property from the existing KeazACCESS framework (KEAZ: A car sharing company founded by Tim Bos) as well as improving it the blockchain experience in their team.
It will consist of fo the primary elements:
SharePay (SHRP) – SharePay is the base currency that will allow users of the ShareRing platform to pay for the use of third party assets. ShareToken (SHR)
ShareToken (SHR) is the digital utility token that drives sharing transactions to be written to the ShareRing ledger that is managed by the ShareRing platform.
Account – This will be a standard account, which such an account being represented by a 24-byte address. The account will contain 4 general fields:
SHRP – SharePay token balance
SHR – ShareToken balance
ASSETS – linked/owned by the account (see below for definition of an Asset) ATTRIBUTES – Any additional attributes that are associated with this account. These attributes may be updated or added by Sharing Economy providers that utilise the ledger such as ID checks by rental companies. These attributes may be ‘global’ (i.e. used by any sharing providers) or ‘local’ (i.e. used by a specific sharing provider).
Assets – An asset represents a tangible real-world or digital asset that is being shared, such as a car, a house, industrial machinery, an e-book, and so on.
Smart Contracts – Similar to a number of other blockchain platforms, such as Ethereum and NEO, the ShareLedger blockchain will feature highly customisable smart contracts. These Smart Contracts will allow for decentralised autonomous applications that can be attached to an asset and/or account. Every smart contract will be Turing complete, meaning it will have the ability to implement sophisticated logic to manage the sharing of the assets. The smart contracts will be tested and reviewed by ShareRing in a sandbox as well as audited by reputable third-party code auditors prior to implementation.
Proof of Stake Consensus
ShareRing have chosen the Leased Proof-of-Stake protocol as the consensus algorithm for ShareLedger. This choice is based on the practicality and security benefits evident in the Waves platform. It is also much more cost effective than Proof-of-Work (POW), and will not suffer from the current issues Bitcoin and other POW cryptocurrencies are facing such as scalability and electricity consumption.
The ShareRing App
At the heart of the ShareRing project lies the ShareRing app:
A universal ‘ShareRing’ app is being developed that will allow anyone to easily see and use any sharing services around them. Each partner will have the option of developing a ‘mini’ app within the ShareRing app that will have functionalities specific to that partner. The app will use geolocation-based services to display the ShareRing services that are nearby
Social Media Presence
Coming from a social media background I feel this is an extremely important area to look into, especially in the crypto world.
ShareRing has done an okay job in growing their social media presence however I feel it could be much better. Here is a look at some of the key stats for their online social media presence:
Youtube: 191 Subscribers Instagram: 238 Followers Linkedin: 376 Followers Telegram: 6,525 members (very active) Twitter: 2,216 Followers (Fairly regular updates) Facebook: 1,965 Followers
Whilst social media may not be a priority just now I feel there has to be a big presence with image-based platforms and video-based platforms. Youtube and Instagram should be made a priority here as it spans all generations:
Other News on ShareRing
There is a lot of stuff going on at the moment with ShareRing which is what makes it an exciting prospect. Rather than give information on each of them here are some highlights provided by the ShareRing team.:
- ShareRing's revolutionary ID management based module OneID.
- Worlds first Blockchain based eVOA in place with major Thai company targeting 5 to 10 million travellers from 20 countries.
- 2.6 million International Hotels/ Accommodation coming on to the Platform. Lots more to come!
- Partnership with HomeAway
- 200,000 Activites, Tours and Events added to the ShareRing App
- Multi Global Car Sharing Partnerships
- 1 Partner Directly Integrating SHR's OneID consisting of 1.2 million Vehicles across 150 Countries
- Luxury Car Brand Sharing Platform purely based on SHR
- SHR payment system SHRP available in 10% Taxi Terminals in Australia
- SHRP available in 10,000 EFTPOS Terminals Australia wide
- White Labelling Services incorporating ShareRings revolutionary OneID
- 20 Significant Unannounced Partnerships, more to come!
- Major Partners include -
- BYD (Largest Electric Car Maker in the World)
- DJI (Largest Drone Maker in the World)
- Keaz (300 locations around the world)
- Yogoo EV Car Sharing
- MOBI Alliance Member
Overview of Positives and Negatives
Negatives
Social Media and marketing possibly needs to be ramped up in order to bring more awareness to the project.
The roadmap and white paper has not been updated recently for 2019/2020 but this I believe is coming soon.
Positives
With a low market cap project like ShareRing the risk to reward ratio is very good for retail and institutional investors.
Technical analysis of current prices, currently at 31 Satoshi, is also very good with resistance levels at 50, 77 and 114 Satoshi which would be nearing its all time high.
Referral program will increase the numbers of users that are currently using the site.
If ShareRing can capture even a small % of the overall sharing market then success looks assured.
There are 20 new announcements coming up and with Tim Bos looking for more partnerships it seems likely that ShareRing will break ATH prices soon.
Great long term hold, in my opinion.
Realistic Expectations of ROI
Short term (4 weeks - 12 weeks)
Short term looks great for ShareRing both from a TA point of view and a fundamental point of view.
With lots of news still to come out about ShareRing there is not going to be a shortage of fundamentals to drive the price up. From a TA point of view the next line of resistance stands at around the 50 Satoshi level which would complete a massive cup and handle formation from August 24th of this year. After that we are looking at resistances of 77 and 114 to reach near the all time highs which i expect ShareRing to reach going into 2020.
Long term (6 Months - 2 Years)
If ShareRing can onboard users and keep on making partnerships at the same rate there will be no stopping it. It’s all about onboarding the users and utilising the most powerful marketing tool ever - word of mouth!
When a great app is realised with great and useful functionality then it tends to go viral and I am hoping this happens for ShareRing.
With a market cap at the moment of just under $6 Million then I don’t think it’s crazy to talk about 1000% increases in the next 2 years and I really believe that is being extremely conservative, given where we think crypto is heading as a whole.
submitted by Grills93 to CryptoMoonShots [link] [comments]

Best General RenVM Questions of January 2020

Best General RenVM Questions of January 2020

‌*These questions are sourced directly from Telegram
Q: When you say RenVM is Trustless, Permissionless, and Decentralized, what does that actually mean?
A: Trustless = RenVM is a virtual machine (a network of nodes, that do computations), this means if you ask RenVM to trade an asset via smart contract logic, it will. No trusted intermediary that holds assets or that you need to rely on. Because RenVM is a decentralized network and computes verified information in a secure environment, no single party can prevent users from sending funds in, withdrawing deposited funds, or computing information needed for updating outside ledgers. RenVM is an agnostic and autonomous virtual broker that holds your digital assets as they move between blockchains.
Permissionless = RenVM is an open protocol; meaning anyone can use RenVM and any project can build with RenVM. You don't need anyone's permission, just plug RenVM into your dApp and you have interoperability.
Decentralized = The nodes that power RenVM ( Darknodes) are scattered throughout the world. RenVM has a peak capacity of up to 10,000 Darknodes (due to REN’s token economics). Realistically, there will probably be 100 - 500 Darknodes run in the initial Mainnet phases, ample decentralized nonetheless.

Q: Okay, so how can you prove this?
A: The publication of our audit results will help prove the trustlessness piece; permissionless and decentralized can be proven today.
Permissionless = https://github.com/renproject/ren-js
Decentralized = https://chaosnet.renproject.io/

Q: How does Ren sMPC work? Sharmir's secret sharing? TSS?
A: There is some confusion here that keeps arising so I will do my best to clarify.TL;DR: *SSS is just data. It’s what you do with the data that matters. RenVM uses sMPC on SSS to create TSS for ECDSA keys.*SSS and TSS aren’t fundamental different things. It’s kind of like asking: do you use numbers, or equations? Equations often (but not always) use numbers or at some point involve numbers.
SSS by itself is just a way of representing secret data (like numbers). sMPC is how to generate and work with that data (like equations). One of the things you can do with that work is produce a form of TSS (this is what RenVM does).
However, TSS is slightly different because it can also be done *without* SSS and sMPC. For example, BLS signatures don’t use SSS or sMPC but they are still a form of TSS.
So, we say that RenVM uses SSS+sMPC because this is more specific than just saying TSS (and you can also do more with SSS+sMPC than just TSS). Specifically, all viable forms of turning ECDSA (a scheme that isn’t naturally threshold based) into a TSS needs SSS+sMPC.
People often get confused about RenVM and claim “SSS can’t be used to sign transactions without making the private key whole again”. That’s a strange statement and shows a fundamental misunderstanding about what SSS is.
To come back to our analogy, it’s like saying “numbers can’t be used to write a book”. That’s kind of true in a direct sense, but there are plenty of ways to encode a book as numbers and then it’s up to how you interpret (how you *use*) those numbers. This is exactly how this text I’m writing is appearing on your screen right now.
SSS is just secret data. It doesn’t make sense to say that SSS *functions*. RenVM is what does the functioning. RenVM *uses* the SSSs to represent private keys. But these are generated and used and destroyed as part of sMPC. The keys are never whole at any point.

Q: Thanks for the explanation. Based on my understanding of SSS, a trusted dealer does need to briefly put the key together. Is this not the case?
A: Remember, SSS is just the representation of a secret. How you get from the secret to its representation is something else. There are many ways to do it. The simplest way is to have a “dealer” that knows the secret and gives out the shares. But, there are other ways. For example: we all act as dealers, and all give each other shares of our individual secret. If there are N of us, we now each have N shares (one from every person). Then we all individually add up the shares that we have. We now each have a share of a “global” secret that no one actually knows. We know this global secret is the sum of everyone’s individual secrets, but unless you know every individual’s secret you cannot know the global secret (even though you have all just collectively generates shares for it). This is an example of an sMPC generation of a random number with collusion resistance against all-but-one adversaries.

Q: If you borrow Ren, you can profit from the opposite Ren gain. That means you could profit from breaking the network and from falling Ren price (because breaking the network, would cause Ren price to drop) (lower amount to be repaid, when the bond gets slashed)
A: Yes, this is why it’s important there has a large number of Darknodes before moving to full decentralisation (large borrowing becomes harder). We’re exploring a few other options too, that should help prevent these kinds of issues.

Q: What are RenVM’s Security and Liveliness parameters?
A: These are discussed in detail in our Wiki, please check it out here: https://github.com/renproject/ren/wiki/Safety-and-Liveliness#analysis

Q: What are the next blockchain under consideration for RenVM?
A: These can be found here: https://github.com/renproject/ren/wiki/Supported-Blockchains

Q: I've just read that Aztec is going to be live this month and currently tests txs with third parties. Are you going to participate in early access or you just more focused on bringing Ren to Subzero stage?
A: At this stage, our entire focus is on Mainnet SubZero. But, we will definitely be following up on integrating with AZTEC once everything is out and stable.

Q: So how does RenVM compare to tBTC, Thorchain, WBTC, etc..?
A: An easy way to think about it is..RenVM’s functionality is a combination of tBTC (+ WBTC by extension), and Thorchain’s (proposed) capabilities... All wrapped into one. Just depends on what the end-user application wants to do with it.

Q1: What are the core technical/security differences between RenVM and tBTC?A1: The algorithm used by tBTC faults if even one node goes offline at the wrong moment (and the whole “keep” of nodes can be penalised for this). RenVM can survive 1/3rd going offline at any point at any time. Advantage for tBTC is that collusion is harder, disadvantage is obviously availability and permissionlessness is lower.
tBTC an only mint/burn lots of 1 BTC and requires an on-Ethereum SPV relay for Bitcoin headers (and for any other chain it adds). No real advantage trade-off IMO.
tBTC has a liquidation mechanism that means nodes can have their bond liquidated because of ETH/BTC price ratio. Advantage means users can get 1 BTC worth of ETH. Disadvantage is it means tBTC is kind of a synthetic: needs a price feed, needs liquid markets for liquidation, users must accept exposure to ETH even if they only hold tBTC, nodes must stay collateralized or lose lots of ETH. RenVM doesn’t have this, and instead uses fees to prevent becoming under-collateralized. This requires a mature market, and assumed Darknodes will value their REN bonds fairly (based on revenue, not necessarily what they can sell it for at current —potentially manipulated—market value). That can be an advantage or disadvantage depending on how you feel.
tBTC focuses more on the idea of a tokenized version of BTC that feels like an ERC20 to the user (and is). RenVM focuses more on letting the user interact with DeFi and use real BTC and real Bitcoin transactions to do so (still an ERC20 under the hood, but the UX is more fluid and integrated). Advantage of tBTC is that it’s probably easier to understand and that might mean better overall experience, disadvantage really comes back to that 1 BTC limit and the need for a more clunky minting/burning experience that might mean worse overall experience. Too early to tell, different projects taking different bets.
tBTC supports BTC (I think they have ZEC these days too). RenVM supports BTC, BCH, and ZEC (docs discuss Matic, XRP, and LTC).
Q2: This are my assumed differences between tBTC and RenVM, are they correct? Some key comparisons:
-Both are vulnerable to oracle attacks
-REN federation failure results in loss or theft of all funds
-tBTC failures tend to result in frothy markets, but holders of tBTC are made whole
-REN quorum rotation is new crypto, and relies on honest deletion of old key shares
-tBTC rotates micro-quorums regularly without relying on honest deletion
-tBTC relies on an SPV relay
-REN relies on federation honesty to fill the relay's purpose
-Both are brittle to deep reorgs, so expanding to weaker chains like ZEC is not clearly a good idea
-REN may see total system failure as the result of a deep reorg, as it changes federation incentives significantly
-tBTC may accidentally punish some honest micro-federations as the result of a deep reorg
-REN generally has much more interaction between incentive models, as everything is mixed into the same pot.
-tBTC is a large collection of small incentive models, while REN is a single complex incentive model
A2: To correct some points:
The oracle situation is different with RenVM, because the fee model is what determines the value of REN with respect to the cross-chain asset. This is the asset is what is used to pay the fee, so no external pricing is needed for it (because you only care about the ratio between REN and the cross-chain asset).
RenVM does rotate quorums regularly, in fact more regularly than in tBTC (although there are micro-quorums, each deposit doesn’t get rotated as far as I know and sticks around for up to 6 months). This rotation involves rotations of the keys too, so it does not rely on honest deletion of key shares.
Federated views of blockchains are easier to expand to support deep re-orgs (just get the nodes to wait for more blocks for that chain). SPV requires longer proofs which begins to scale more poorly.
Not sure what you mean by “one big pot”, but there are multiple quorums so the failure of one is isolated from the failures of others. For example, if there are 10 shards supporting BTC and one of them fails, then this is equivalent to a sudden 10% fee being applied. Harsh, yes, but not total failure of the whole system (and doesn’t affect other assets).
Would be interesting what RenVM would look like with lots more shards that are smaller. Failure becomes much more isolated and affects the overall network less.
Further, the amount of tBTC you can mint is dependent on people who are long ETH and prefer locking it up in Keep for earning a smallish fee instead of putting it in Compound or leveraging with dydx. tBTC is competing for liquidity while RenVM isn't.

Q: I understand correctly RenVM (sMPC) can get up to a 50% security threshold, can you tell me more?
A: The best you can theoretically do with sMPC is 50-67% of the total value of REN used to bond Darknodes (RenVM will eventually work up to 50% and won’t go for 67% because we care about liveliness just as much as safety). As an example, if there’s $1M of REN currently locked up in bonded Darknodes you could have up to $500K of tokens shifted through RenVM at any one specific moment. You could do more than that in daily volume, but at any one moment this is the limit.Beyond this limit, you can still remain secure but you cannot assume that players are going to be acting to maximize their profit. Under this limit, a colluding group of adversaries has no incentive to subvert safety/liveliness properties because the cost to attack roughly outweighs the gain. Beyond this limit, you need to assume that players are behaving out of commitment to the network (not necessarily a bad assumption, but definitely weaker than the maximizing profits assumption).

Q: Why is using ETH as collateral for RenVM a bad idea?
A: Using ETH as collateral in this kind of system (like having to deposit say 20 ETH for a bond) would not make any sense because the collateral value would then fluctuate independently of what kind of value RenVM is providing. The REN token on the other hand directly correlates with the usage of RenVM which makes bonding with REN much more appropriate. DAI as a bond would not work as well because then you can't limit attackers with enough funds to launch as many darknodes as they want until they can attack the network. REN is limited in supply and therefore makes it harder to get enough of it without the price shooting up (making it much more expensive to attack as they would lose their bonds as well).
A major advantage of Ren's specific usage of sMPC is that security can be regulated economically. All value (that's being interopped at least) passing through RenVM has explicit value. The network can self-regulate to ensure an attack is never worth it.

Q: Given the fee model proposal/ceiling, might be a liquidity issue with renBTC. More demand than possible supply?A: I don’t think so. As renBTC is minted, the fees being earned by Darknodes go up, and therefore the value of REN goes up. Imagine that the demand is so great that the amount of renBTC is pushing close to 100% of the limit. This is a very loud and clear message to the Darknodes that they’re going to be earning good fees and that demand is high. Almost by definition, this means REN is worth more.
Profits of the Darknodes, and therefore security of the network, is based solely on the use of the network (this is what you want because your network does not make or break on things outside the systems control). In a system like tBTC there are liquidity issues because you need to convince ETH holders to bond ETH and this is an external problem. Maybe ETH is pumping irrespective of tBTC use and people begin leaving tBTC to sell their ETH. Or, that ETH is dumping, and so tBTC nodes are either liquidated or all their profits are eaten by the fact that they have to be long on ETH (and tBTC holders cannot get their BTC back in this case). Feels real bad man.

Q: I’m still wondering which asset people will choose: tbtc or renBTC? I’m assuming the fact that all tbtc is backed by eth + btc might make some people more comfortable with it.
A: Maybe :) personally I’d rather know that my renBTC can always be turned back into BTC, and that my transactions will always go through. I also think there are many BTC holders that would rather not have to “believe in ETH” as an externality just to maximize use of their BTC.

Q: How does the liquidation mechanism work? Can any party, including non-nodes act as liquidators? There needs to be a price feed for liquidation and to determine the minting fee - where does this price feed come from?
A: RenVM does not have a liquidation mechanism.
Q: I don’t understand how the price feeds for minting fees make sense. You are saying that the inputs for the fee curve depend on the amount of fees derived by the system. This is circular in a sense?
A: By evaluating the REN based on the income you can get from bonding it and working. The only thing that drives REN value is the fact that REN can be bonded to allow work to be done to earn revenue. So any price feed (however you define it) is eventually rooted in the fees earned.

Q: Who’s doing RenVM’s Security Audit?
A: ChainSecurity | https://chainsecurity.com/

Q: Can you explain RenVM’s proposed fee model?
A: The proposed fee model can be found here: https://github.com/renproject/ren/wiki/Safety-and-Liveliness#fees

Q: Can you explain in more detail the difference between "execution" and "powering P2P Network". I think that these functions are somehow overlapping? Can you define in more detail what is "execution" and "powering P2P Network"? You also said that at later stages semi-core might still exist "as a secondary signature on everything (this can mathematically only increase security, because the fully decentralised signature is still needed)". What power will this secondary signature have?
A: By execution we specifically mean signing things with the secret ECDSA keys. The P2P network is how every node communicates with every other node. The semi-core doesn’t have any “special powers”. If it stays, it would literally just be a second signature required (as opposed to the one signature required right now).
This cannot affect safety, because the first signature is still required. Any attack you wanted to do would still have to succeed against the “normal” part of the network. This can affect liveliness, because the semi-core could decide not to sign. However, the semi-core follows the same rules as normal shards. The signature is tolerant to 1/3rd for both safety/liveliness. So, 1/3rd+ would have to decide to not sign.
Members of the semi-core would be there under governance from the rest of our ecosystem. The idea is that members would be chosen for their external value. We’ve discussed in-depth the idea of L<3. But, if RenVM is used in MakerDAO, Compound, dYdX, Kyber, etc. it would be desirable to capture the value of these ecosystems too, not just the value of REN bonded. The semi-core as a second signature is a way to do this.
Imagine if the members for those projects, because those projects want to help secure renBTC, because it’s used in their ecosystems. There is a very strong incentive for them to behave honestly. To attack RenVM you first have to attack the Darknodes “as per usual” (the current design), and then somehow convince 1/3rd of these projects to act dishonestly and collapse their own ecosystems and their own reputations. This is a very difficult thing to do.
Worth reminding: the draft for this proposal isn’t finished. It would be great for everyone to give us their thoughts on GitHub when it is proposed, so we can keep a persistent record.

Q: Which method or equation is used to calculate REN value based on fees? I'm interested in how REN value is calculated as well, to maintain the L < 3 ratio?
A: We haven’t finalized this yet. But, at this stage, the plan is to have a smart contract that is controlled by the Darknodes. We want to wait to see how SubZero and Zero go before committing to a specific formulation, as this will give us a chance to bootstrap the network and field inputs from the Darknodes owners after the earnings they can make have become more apparent.
submitted by RENProtocol to RenProject [link] [comments]

/r/Bitcoin FAQ - Newcomers please read

Welcome to the /Bitcoin Sticky FAQ

You've probably been hearing a lot about Bitcoin recently and are wondering what's the big deal? Most of your questions should be answered by the resources below but if you have additional questions feel free to ask them in the comments.
The following videos are a good starting point for understanding how bitcoin works and a little about its long term potential:
For some more great introductory videos check out Andreas Antonopoulos's YouTube playlists, he is probably the best bitcoin educator out there today. Also have to give mention to James D'Angelo's Bitcoin 101 Blackboard series. Lots of additional video resources can be found at the videos wiki page or /BitcoinTV.
Key properties of bitcoin
Some excellent writing on Bitcoin's value proposition and future can be found here. Bitcoin statistics can be found here, here and here. Developer resources can be found here and here. Peer-reviewed research papers can be found here. The number of times Bitcoin was declared dead by the media can be found here. Scaling resources here, and of course the whitepaper that started it all.

Where can I buy bitcoins?

BuyBitcoinWorldwide.com and Howtobuybitcoin.io are helpful sites for beginners. You can buy or sell any amount of bitcoin and there are several easy methods to purchase bitcoin with cash, credit card or bank transfer. Some of the more popular resources are below, also, check out the bitcoinity exchange resources for a larger list of options for purchases.
Bank Transfer Credit / Debit card Cash
Coinbase Coinbase LocalBitcoins
Gemini Bitstamp LibertyX
GDAX Bitit Mycelium LocalTrader
Bitstamp Cex.io BitQuick
Kraken CoinMama WallofCoins
Xapo BitcoinOTC
Cex.io
itBit
Bitit
Bitsquare
Here is a listing of local ATMs. If you would like your paycheck automatically converted to bitcoin use Cashila or Bitwage.
Note: Bitcoins are valued at whatever market price people are willing to pay for them in balancing act of supply vs demand. Unlike traditional markets, bitcoin markets operate 24 hours per day, 365 days per year. Preev is a useful site that that shows how much various denominations of bitcoin are worth in different currencies. Alternatively you can just Google "1 bitcoin in (your local currency)".

Securing your bitcoins

With bitcoin you can "Be your own bank" and personally secure your bitcoins OR you can use third party companies aka "Bitcoin banks" which will hold the bitcoins for you.
Android iOs Desktop
Mycelium BreadWallet Electrum
CoPay AirBitz Armory
Another interesting use case for physical storage/transfer is the Opendime. Opendime is a small USB stick that allows you to spend Bitcoin by physically passing it along so it's anonymous and tangible like cash.
Note: For increased security, use Two Factor Authentication (2FA) everywhere it is offered, including email!
2FA requires a second confirmation code to access your account, usually from a text message or app, making it much harder for thieves to gain access. Google Authenticator and Authy are the two most popular 2FA services, download links are below. Make sure you create backups of your 2FA codes.
Google Auth Authy
Android Android
iOS iOS

Where can I spend bitcoins?

A more comprehensive list can be found at the Trade FAQ but some more commons ones are below.
Store Product
Gyft Gift cards for hundreds of retailers including Amazon, Target, Walmart, Starbucks, Whole Foods, CVS, Lowes, Home Depot, iTunes, Best Buy, Sears, Kohls, eBay, GameStop, etc.
Steam, HumbleBundle, Games Planet, itch.io, g2g and kinguin For when you need to get your game on
Microsoft Xbox games, phone apps and software
Spendabit, The Bitcoin Shop, Overstock, DuoSearch, The Bitcoin Directory and BazaarBay Retail shopping with millions of results
ShakePay Generate one time use Visa cards in seconds
NewEgg and Dell For all your electronics needs
Cashila, Bitwa.la, Coinbills, Piixpay, Bitbill.eu, Bylls, Coins.ph, Bitrefill, Pey.de, LivingRoomofSatoshi, Hyphen.to, Coinsfer, GetPaidinBitcoin, Coins.co.th, More #1, #2 Bill payment
Foodler, Menufy, Takeaway, Thuisbezorgd NL, Pizza For Coins Takeout delivered to your door!
Expedia, Cheapair, Lot, Destinia, BTCTrip, Abitsky, SkyTours, Fluege the Travel category on Gyft and 9flats For when you need to get away
BoltVM, BitHost VPS service
Cryptostorm, Mullvad, and PIA VPN services
Namecheap, Porkbun For new domain name registration
Stampnik and GetUSPS Discounted USPS Priority, Express, First-Class mail postage
Reddit Gold Premium membership which can be gifted to others
Coinmap, 99Bitcoins and AirBitz are helpful to find local businesses accepting bitcoins. A good resource for UK residents is at wheretospendbitcoins.co.uk.
There are also lots of charities which accept bitcoin donations, such as Wikipedia, Red Cross, Amnesty International, United Way, ACLU and the EFF. You can find a longer list here.

Merchant Resources

There are several benefits to accepting bitcoin as a payment option if you are a merchant;
If you are interested in accepting bitcoin as a payment method, there are several options available;

Can I mine bitcoin?

Mining bitcoins can be a fun learning experience, but be aware that you will most likely operate at a loss. Newcomers are often advised to stay away from mining unless they are only interested in it as a hobby similar to folding at home. If you want to learn more about mining you can read more here. Still have mining questions? The crew at /BitcoinMining would be happy to help you out.
If you want to contribute to the bitcoin network by hosting the blockchain and propagating transactions you can run a full node using this setup guide. Bitseed is an easy option for getting set up. You can view the global node distribution here.

Earning bitcoins

Just like any other form of money, you can also earn bitcoins by being paid to do a job.
Site Description
WorkingForBitcoins, Bitwage, XBTfreelancer, Cryptogrind, Bitlancerr, Coinality, Bitgigs, /Jobs4Bitcoins, Rein Project Freelancing
OpenBazaar, Purse.io, Bitify, /Bitmarket, 21 Market Marketplaces
Watchmybit, Streamium.io, OTika.tv, XOtika.tv NSFW, /GirlsGoneBitcoin NSFW Video Streaming
Bitasker, BitforTip, WillPayCoin Tasks
Supload.com, SatoshiBox, JoyStream, File Army File/Image Sharing
CoinAd, A-ads, Coinzilla.io Advertising
You can also earn bitcoins by participating as a market maker on JoinMarket by allowing users to perform CoinJoin transactions with your bitcoins for a small fee (requires you to already have some bitcoins)

Bitcoin Projects

The following is a short list of ongoing projects that might be worth taking a look at if you are interested in current development in the bitcoin space.
Project Description
Lightning Network, Amiko Pay, and Strawpay Payment channels for network scaling
Blockstream and Drivechain Sidechains
21, Inc. Open source library for the machine payable web
ShapeShift.io Trade between bitcoins and altcoins easily
Open Transactions, Counterparty, Omni, Open Assets, Symbiont and Chain Financial asset platforms
Hivemind and Augur Prediction markets
Mirror Smart contracts
Mediachain Decentralized media library
Tierion and Factom Records & Titles on the blockchain
BitMarkets, DropZone, Beaver and Open Bazaar Decentralized markets
Samourai and Dark Wallet - abandoned Privacy-enhancing wallets
JoinMarket CoinJoin implementation (Increase privacy and/or Earn interest on bitcoin holdings)
Coinffeine and Bitsquare Decentralized bitcoin exchanges
Keybase and Bitrated Identity & Reputation management
Bitmesh and Telehash Mesh networking
JoyStream BitTorrent client with paid seeding
MORPHiS Decentralized, encrypted internet
Storj and Sia Decentralized file storage
Streamium and Faradam Pay in real time for on-demand services
Abra Global P2P money transmitter network
bitSIM PIN secure hardware token between SIM & Phone
Identifi Decentralized address book w/ ratings system
Coinometrics Institutional-level Bitcoin Data & Research
Blocktrail and BitGo Multisig bitcoin API
Bitcore Open source Bitcoin javascript library
Insight Open source blockchain API
Leet Kill your friends and take their money ;)

Bitcoin Units

One Bitcoin is quite large (hundreds of £/$/€) so people often deal in smaller units. The most common subunits are listed below:
Unit Symbol Value Info
millibitcoin mBTC 1,000 per bitcoin SI unit for milli i.e. millilitre (mL) or millimetre (mm)
microbitcoin μBTC 1,000,000 per bitcoin SI unit for micro i.e microlitre (μL) or micrometre (μm)
bit bit 1,000,000 per bitcoin Colloquial "slang" term for microbitcoin
satoshi sat 100,000,000 per bitcoin Smallest unit in bitcoin, named after the inventor
For example, assuming an arbitrary exchange rate of $500 for one Bitcoin, a $10 meal would equal:
For more information check out the Bitcoin units wiki.
Still have questions? Feel free to ask in the comments below or stick around for our weekly Mentor Monday thread. If you decide to post a question in /Bitcoin, please use the search bar to see if it has been answered before, and remember to follow the community rules outlined on the sidebar to receive a better response. The mods are busy helping manage our community so please do not message them unless you notice problems with the functionality of the subreddit. A complete list of bitcoin related subreddits can be found here
Note: This is a community created FAQ. If you notice anything missing from the FAQ or that requires clarification you can edit it here and it will be included in the next revision pending approval.
Welcome to the Bitcoin community and the new decentralized economy!
submitted by BinaryResult to Bitcoin [link] [comments]

How to mine $1,000,000 of Bitcoin using just a laptop ... Bitcoin hack download free blockchain software 2020 micro hash manning site Earn Free bitcoin without ... How To Mine 1 Bitcoin in 10 Minutes - Blockchain BTC Miner ... Download Free Blockchain Bitcoin Hack New version 2020 ...

Max. BTC price was $13,152.81. Min. Bitcoin value was $12,793.08. Don't be sad and watch the next day. Look the list of the most rising crypto-currencies on yesterday; Look more news about BTC; See the live mBTC price. Control the current rate. Convert amounts to or from BTC and other currencies with this simple calculator. What is Milibit (mBTC)? Milibit (mBTC) is a unit of Bitcoin (BTC ... Bitcoin information (FAQ) Predefined Values: Click the Satoshi value below to use that value above. 1 Satoshi = 0.00000001 ฿ 10 Satoshi = 0.00000010 ฿ 100 Satoshi = 0.00000100 ฿ = 1 Bit / μBTC (you-bit) 1,000 Satoshi = 0.00001000 ฿ 10,000 Satoshi = 0.00010000 ฿ 100,000 Satoshi = 0.00100000 ฿ = 1 mBTC (em-bit) 1,000,000 Satoshi = 0.01000000 ฿ = 1 cBTC (bitcent) 10,000,000 Satoshi ... Die Bitcoin-Einheiten. 1 Bitcoin hat acht Nachkommastellen. Das allein macht die Umrechnung von BTC-Beträgen in Euro nicht besonders leicht. Hinzu kommt, dass Bitcoin bei einem aktuellen Preis von rund Array Euro so hoch ist, dass kleinere Beträge wie zum Beispiel 20 € nur sehr schwer in BTC umgerechnet werden können. Now you can use this calculator to do Bitcoin conversions like BTC to EUR and EUR to BTC. You could even convert something like EUR to USD and see what the rate looks like using Bitcoin as the base currency. New Altcoins (2/7/16): ETH and LTC. The Bitcoin converter is now an altcoin converter as well! We've added support for some of the most popular alternative cryptocurrencies, Ethereum and ... he CoinDesk Bitcoin Calculator converts bitcoin into any world currency using the Bitcoin Price Index, including USD, GBP, EUR, CNY, JPY, and more.

[index] [42893] [27992] [51150] [47470] [2896] [28290] [30271] [42784] [16326] [16202]

How to mine $1,000,000 of Bitcoin using just a laptop ...

What it really takes to mine a Bitcoin in 10 Minutes. Firstly I'll show you a special free method to mine Bitcoin and send funds directly to your wallet in 1... How To Insert Image Into Another Image Using Microsoft Word - Duration: 14 ... How to Calculate Intrinsic Value (Apple Stock Example) - Duration: 11:22. Investing with Tom Recommended for you. 11 ... BITCOIN + ETHEREUM TA FORECAST - Duration: 8 ... Microsoft Excel lesson 2 - compound interest calculator (absolute referencing, fill down) - Duration: 8:38. Magic Monk 85,516 views. 8:38 ... Close. This video is unavailable. What is NAMECOIN BITCOIN'S First Fork http://youtu.be/oBkhPhu3_B4 Test Scanning Stainless Steel BITCOIN WALLET view http://youtu.be/P3Cny4iX-CM Why the block...

#